Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

Related tags

Deep LearningSGMNet
Overview

SGMNet Implementation

Framework

PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang Bai, Zeyu Hu, Chiew-Lan Tai, Long Quan.

This work focuses on keypoint-based image matching problem. We mitigate the qudratic complexity issue for typical GNN-based matching by leveraging a restrited set of pre-matched seeds.

This repo contains training, evaluation and basic demo sripts used in our paper. As baseline, it also includes our implementation for SuperGlue. If you find this project useful, please cite:

@article{chen2021sgmnet,
  title={Learning to Match Features with Seeded Graph Matching Network},
  author={Chen, Hongkai and Luo, Zixin and Zhang, Jiahui and Zhou, Lei and Bai, Xuyang and Hu, Zeyu and Tai, Chiew-Lan and Quan, Long},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Part of the code is borrowed or ported from

SuperPoint, for SuperPoint implementation,

SuperGlue, for SuperGlue implementation and exact auc computation,

OANet, for training scheme,

PointCN, for implementaion of PointCN block and geometric transformations,

FM-Bench, for evaluation of fundamental matrix estimation.

Please also cite these works if you find the corresponding code useful.

Requirements

We use PyTorch 1.6, later version should also be compatible. Please refer to requirements.txt for other dependencies.

If you are using conda, you may configure the environment as:

conda create --name sgmnet python=3.7 -y && \
pip install -r requirements.txt && \
conda activate sgmnet

Get started

Clone the repo:

git clone https://github.com/vdvchen/SGMNet.git && \

download model weights from here

extract weights by

tar -xvf weights.tar.gz

A quick demo for image matching can be called by:

cd demo && python demo.py --config_path configs/sgm_config.yaml

The resutls will be saved as match.png in demo folder. You may configure the matcher in corresponding yaml file.

Evaluation

We demonstrate evaluation process with RootSIFT and SGMNet. Evaluation with other features/matchers can be conducted by configuring the corresponding yaml files.

1. YFCC Evaluation

Refer to OANet repo to download raw YFCC100M dataset

Data Generation

  1. Configure datadump/configs/yfcc_root.yaml for the following entries

    rawdata_dir: path for yfcc rawdata
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (2k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/yfcc_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. yfcc_root_2000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/yfcc_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for yfcc_rawdata
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/yfcc_eval_sgm.yaml

For 2k RootSIFT matching, similar results as below should be obtained,

auc th: [5 10 15 20 25 30]
approx auc: [0.634 0.729 0.783 0.818 0.843 0.861]
exact auc: [0.355 0.552 0.655 0.719 0.762 0.793]
mean match score: 17.06
mean precision: 86.08

2. ScanNet Evaluation

Download processed ScanNet evaluation data.

Data Generation

  1. Configure datadump/configs/scannet_root.yaml for the following entries

    rawdata_dir: path for ScanNet raw data
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (2k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/scannet_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. scannet_root_2000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/scannet_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for ScanNet evaluation data
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/scannet_eval_sgm.yaml

For 2k RootSIFT matching, similar results as below should be obtained,

auc th: [5 10 15 20 25 30]
approx auc: [0.322 0.427 0.493 0.541 0.577 0.606]
exact auc: [0.125 0.283 0.383 0.452 0.503 0.541]
mean match score: 8.79
mean precision: 45.54

3. FM-Bench Evaluation

Refer to FM-Bench repo to download raw FM-Bench dataset

Data Generation

  1. Configure datadump/configs/fmbench_root.yaml for the following entries

    rawdata_dir: path for fmbench raw data
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (4k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/fmbench_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. fmbench_root_4000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/fm_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for fmbench raw data
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/fm_eval_sgm.yaml

For 4k RootSIFT matching, similar results as below should be obtained,

CPC results:
F_recall:  0.617
precision:  0.7489
precision_post:  0.8399
num_corr:  663.838
num_corr_post:  284.455  

KITTI results:
F_recall:  0.911
precision:  0.9035133886251774
precision_post:  0.9837278538989989
num_corr:  1670.548
num_corr_post:  1121.902

TUM results:
F_recall:  0.666
precision:  0.6520260208250837
precision_post:  0.731507123852191
num_corr:  1650.579
num_corr_post:  941.846

Tanks_and_Temples results:
F_recall:  0.855
precision:  0.7452896681043316
precision_post:  0.8020184635328004
num_corr:  946.571
num_corr_post:  466.865

4. Run time and memory Evaluation

We provide a script to test run time and memory consumption, for a quick start, run

cd evaluation
python eval_cost.py --matcher_name SGM  --config_path configs/cost/sgm_cost.yaml --num_kpt=4000

You may configure the matcher in corresponding yaml files.

Visualization

For visualization of matching results on different dataset, add --vis_folder argument on evaluation command, e.g.

cd evaluation
python evaluate.py --config_path configs/eval/***.yaml --vis_folder visualization

Training

We train both SGMNet and SuperGlue on GL3D dataset. The training data is pre-generated in an offline manner, which yields about 400k pairs in total.

To generate training/validation dataset

  1. Download GL3D rawdata

  2. Configure datadump/configs/gl3d.yaml. Some important entries are

    rawdata_dir: path for GL3D raw data
    feature_dump_dir: path for extracted features
    dataset_dump_dir: path for generated dataset
    pairs_per_seq: number of pairs sampled for each sequence
    angle_th: angle threshold for sampled pairs
    overlap_th: common track threshold for sampled pairs
    extractor: configuration for keypoint extractor

  3. dump dataset by

cd datadump
python dump.py --config_path configs/gl3d.yaml

Two parts of data will be generated. (1) Extracted features and keypoints will be placed under feature_dump_dir (2) Pairwise dataset will be placed under dataset_dump_dir.

  1. After data generation, configure train/train_sgm.sh for necessary entries, including
    rawdata_path: path for GL3D raw data
    desc_path: path for extracted features
    dataset_path: path for generated dataset
    desc_suffix: suffix for keypoint files, _root_1000.hdf5 for 1k RootSIFT by default.
    log_base: log directory for training

  2. run SGMNet training scripts by

bash train_sgm.sh

our training scripts support multi-gpu training, which can be enabled by configure train/train_sgm.sh for these entries

CUDA_VISIBLE_DEVICES: id of gpus to be used
nproc_per_node: number of gpus to be used

run SuperGlue training scripts by

bash train_sg.sh
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022