FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

Overview

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation (CVPR 2021)

Eg1 Eg2

[project page] [paper] [Project Video]

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.

Dependencies

We used the following to train and test the model.

  • Ubuntu 18.04
  • Python==3.7.4
  • numpy==1.19.2
  • PyTorch==1.5.0, torchvision==0.6.0, cudatoolkit==10.1

Model

Training model on Vimeo-90K septuplets

For training your own model on the Vimeo-90K dataset, use the following command. You can download the dataset from this link. The results reported in the paper are trained using 8GPUs.

python main.py --batch_size 32 --test_batch_size 32 --dataset vimeo90K_septuplet --loss 1*L1 --max_epoch 200 --lr 0.0002 --data_root <dataset_path> --n_outputs 1

Training on GoPro dataset is similar, change n_outputs to 7 for 8x interpolation.

Testing using trained model.

Trained Models.

You can download the pretrained FLAVR models from the following links.

Method Trained Model
2x Link
4x Link
8x Link

2x Interpolation

For testing a pretrained model on Vimeo-90K septuplet validation set, you can run the following command:

python test.py --dataset vimeo90K_septuplet --data_root <data_path> --load_from <saved_model> --n_outputs 1

8x Interpolation

For testing a multiframe interpolation model, use the same command as above with multiframe FLAVR model, with n_outputs changed accordingly.

Time Benchmarking

The testing script, in addition to computing PSNR and SSIM values, will also output the inference time and speed for interpolation.

Evaluation on Middleburry

To evaluate on the public benchmark of Middleburry, run the following.

python Middleburry_Test.py --data_root <data_path> --load_from <model_path> 

The interpolated images will be saved to the folder Middleburry in a format that can be readily uploaded to the leaderboard.

SloMo-Filter on custom video

You can use our trained models and apply the slomo filter on your own video (requires OpenCV 4.2.0). Use the following command. If you want to convert a 30FPS video to 240FPS video, simply use the command

python interpolate.py --input_video <input_video> --factor 8 --load_model <model_path>

by using our pretrained model for 8x interpolation. For converting a 30FPS video to 60FPS video, use a 2x model with factor 2.

Baseline Models

We also train models for many other previous works on our setting, and provide models for all these methods. Complete benchmarking scripts will also be released soon.

Method PSNR on Vimeo Trained Model
FLAVR 36.3 Model
AdaCoF 35.3 Model
QVI 35.15 Model
DAIN 34.19 Model
SuperSloMo* 32.90 Model
  • SuperSloMo is implemented using code repository from here. Other baselines are implemented using the official codebases.

Google Colab

Coming soon ... !

Acknowledgement

The code is heavily borrowed from Facebook's official PyTorch video repository and CAIN.

Cite

If this code helps in your work, please consider citing us.

@article{kalluri2021flavr,
  title={FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation},
  author={Kalluri, Tarun and Pathak, Deepak and Chandraker, Manmohan and Tran, Du},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tarun K
Deep Learning. Mostly Python, PyTorch and Tensorflow.
Tarun K
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022