Autonomous Movement from Simultaneous Localization and Mapping

Overview

Autonomous Movement from Simultaneous Localization and Mapping

About us

Built by a group of Clarkson University students with the help from Professor Masudul Imtiaz and his Lab Resources.

Micheal Caracciolo           - Sophomore, ECE Department
Owen Casciotti               - Senior, ECE Department
Chris Lloyd                  - Senior, ECE Department
Ernesto Sola-Thomas          - Freshman, ECE Department
Matthew Weaver               - Sophomore, ECE Department
Kyle Bielby                  - Senior, ECE Department
Md Abdul Baset Sarker        - Graduate Student, ECE Department
Tipu Sultan                  - Graduate Student, ME Department
Masudul Imtiaz               - Professor, Clarkson University ECE Department

This project began in January 2021 and was finished May 5th 2021.

Synopsis

Presenting the development of a Simultaneous Localization and Mapping (SLAM) based Autonomous Navigation system.

Supported Devices:

Jetson AGX
Jetson Nano

Hardware:

Wheelchair
Jetson Development board
Any Arduino
Development Computer to install Jetson Jetpack SDK (For AGX)
One Intel Realsense D415
One Motor controller ()
2 12V Batteries For Motors
2 12V Lipo Batteries for Jetson

Software:

Tensorflow Version: 2.3.1

OpenVSLAM

We will need to install a few different Python 3.8 packages. We recommend using Conda environments as then you will not have to compile a few packages. However, some packages are not available in Conda, for those just install via pip while inside of the appropriate Conda env.

csv
heapq
Jetson.GPIO (Can only be installed on Jetson)
keyboard
matplotlib
msgpack
numpy
scipy (Greater than 1.5.0)
signal
websockets

Initial Setup

OpenVSLAM, Official Documentation

Webserver, Not needed unless want to interface with phone

  • Move the www folder into your /var directory in your root file system.
  • Open up python server files and insert your static IP of your Jetson
  • Run python server.py

Note: There is some example data and maps in the csv format. This format is required to correctly transmit maps/paths to the device that is listening to the server.

Android Phone, APK here

  • Insert the IP wanting to connect to, in this instance, the static IP of the Jetson
  • Build the Java app to your Android Phone

Note: This can only be used if the Webserver is set up and the server.py is on. We recommend to have it be turned on via startup. We do not have this implemented in our current code, but can be easily added. If you plan on using a Android Phone for a Map/Path/End point interface, you will need to edit some lines in /src/main.py and add to send_location.py. This is all untested code currently.

Source Code, ensure you're in the right Conda Environment

  • To use your own map/.msg file from OpenVSLAM, you will need to put it in the /data folder. There are a few options with this, you can either use the raw .msg file which our MapFileUnpacker.py will take care of, or you can create a csv format of 0 and 1's in the format of a map. 0 being unoccupied and 1 being occupied in the Occupancy Grid Map. For even easier storage, you could run MapFileUnpacker.py and have it extract the keyframes into a csv, which then you can use for OLD_main.py or main.py. We recommend to use the map file you created which is in the form of .msg.
  • You can either use OLD_main.py or main.py. OLD_main.py can be ran without having to run the motors on the connected Jetson. This is helpful for debugging and testing before you decide to implement the map onto a Jetson. main.py will ONLY work on a Jetson as it will call JetsonMotorInterface.py which contains Jetson.GPIO libraries which can only be installed on a Jetson.
  • If the Android Phone is set up, you will need to edit main.py to send the start position via send_location.py to the webserver. You will also need to uncomment a few lines so that the current map is sent to the /var/www/html filepath. Then, the phone should be able to send back a end value which calls def main with that end value. Otherwise, def main will run with a predefined end value in code.
  • To set up the pinout, you will need to first build arduino_motor_ctrl.ino onto the Arduino that is connected to the motor controller. You can use virtually any pins on the Arduino, depending on what Arduino you use. Set these pins in the .ino file. Next, we want to set the pins on the Jetson that output the data to the Arduino pins. Set these pins in JetsonMotorInterface.py. Be careful not to use any I2C or USART pins as these cannot be configured as GPIO Output.

Note: To properly run main.py without any issues, it is recommended to follow this so that you do not need to run Sudo for any of the /src files. If you were to run Sudo, you would have a bunch of different libraries and it will not run properly. If you get an Illegal Instruction error, please try to create a Conda environment to run these scripts.

Note: We are using a Sabertooth 2x32 Dual 32A Motor Driver to drive our dual Wheelchair motors. The Arduino also gets it's power from the Motor Driver, but do not connect it there while it is connected to the computer for building.

A few things to be weary of, in the main.py, since we are not using the Localization from VSLAM, we are simulating the created map into a path. This path will run differently depending on how accurate it is and the speed of your motors. We recommend you to scale your room to your map, so you will want to section out your map in code and have a timing ratio to ensure it moves the right distance of "Occupancy Grid Map spaces". This is explained better in the code.

The Reinforcement Learning files inside of /src/RL are purely experimental and do work for training. However, due to time constraints, they have not been polished enough to work with our design. They are published here for any future use as they are completely made open-source.

Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. NausÄ—das 6 Aug 30, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023