Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Overview

Implicit Internal Video Inpainting

Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

paper | project website | 4K data | demo video

Introduction

Want to remove objects from a video without days of training and thousands of training videos? Try our simple but effective internal video inpainting method. The inpainting process is zero-shot and implicit, which does not need any pretraining on large datasets or optical-flow estimation. We further extend the proposed method to more challenging tasks: video object removal with limited annotated masks, and inpainting on ultra high-resolution videos (e.g., 4K videos).

TO DO

  • Release code for 4K video inpainting

Setup

Installation

git clone https://github.com/Tengfei-Wang/Implicit-Internal-Video-Inpainting.git
cd Implicit-Internal-Video-Inpainting

Environment

This code is based on tensorflow 2.x (tested on tensorflow 2.2, 2.4).

The environment can be simply set up by Anaconda:

conda create -n IIVI python=3.7
conda activate IIVI
conda install tensorflow-gpu tensorboard
pip install pyaml 
pip install opencv-python
pip install tensorflow-addons

Or, you can also set up the environment from the provided environment.yml:

conda env create -f environment.yml
conda activate IIVI

Usage

Quick Start

We provide an example sequence 'bmx-trees' in ./inputs/ . To try our method:

python train.py

The default iterations is set to 50,000 in config/train.yml, and the internal learning takes ~4 hours with a single GPU. During the learning process, you can use tensorboard to check the inpainting results by:

tensorboard --logdir ./exp/logs

After the training, the final results can be saved in ./exp/results/ by:

python test.py

You can also modify 'model_restore' in config/test.yml to save results with different checkpoints.

Try Your Own Data

Data preprocess

Before training, we advise to dilate the object masks first to exclude some edge pixels. Otherwise, the imperfectly-annotated masks would lead to artifacts in the object removal task.

You can generate and preprocess the masks by this script:

python scripts/preprocess_mask.py --annotation_path inputs/annotations/bmx-trees

Basic training

Modify the config/train.yml, which indicates the video path, log path, and training iterations,etc.. The training iterations depends on the video length, and it typically takes 30,000 ~ 80,000 iterations for convergence for 100-frame videos. By default, we only use reconstruction loss for training, and it works well for most cases.

python train.py

Improve the sharpness and consistency

For some hard videos, the former training may not produce a pleasing result. You can fine-tune the trained model with another losses. To this end, modify the 'model_restore' in config/test.yml to the checkpoint path of basic training. Also set ambiguity_loss or stabilization_loss to True. Then fine-tune the basic checkpoint for 20,000-40,000 iterations.

python train.py

Inference

Modify the ./config/test.yml, which indicates the video path, log path, and save path.

python test.py

Mask Propagation from A Single Frame

When you only annotate the object mask of one frame (or few frames), our method can propagate it to other frames automatically.

Modify ./config/train_mask.yml. We typically set the training iterations to 4,000 ~ 20,000, and the learning rate to 1e-5 ~ 1e-4.

python train_mask.py

After training, modify ./config/test_mask.yml, and then:

python test_mask.py

High-resolution Video Inpainting

Our 4K videos and mask annotations can be downloaded in 4K data.

More Results

Our results on 70 DAVIS videos (including failure cases) can be found here for your reference :)
If you need the PNG version of our uncompressed results, please contact the authors.

Citation

If you find this work useful for your research, please cite:

@inproceedings{ouyang2021video,
  title={Internal Video Inpainting by Implicit Long-range Propagation},
  author={Ouyang, Hao and Wang, Tengfei and Chen, Qifeng},
  booktitle={International Conference on Computer Vision (ICCV) },
  year={2021}
} 

If you are also interested in the image inpainting or internal learning, this paper can be also helpful :)

@inproceedings{wang2021image,
  title={Image Inpainting with External-internal Learning and Monochromic Bottleneck},
  author={Wang, Tengfei and Ouyang, Hao and Chen, Qifeng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5120--5129},
  year={2021}
}

Contact

Please send emails to Hao Ouyang or Tengfei Wang if there is any question

TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022