The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

Overview

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

This is the official implementation of our ICCV2021 paper GyroFlow.

Our presentation video: [Youtube][Bilibili].

Our Poster

image

Dependencies

  • MegEngine==1.6.0
  • Other requirements please refer torequirements.txt.

Data Preparation

GOF-Train

2021.11.15: We release the GOF_Train V1 that contains 2000 samples.

The download link is GoogleDrive or CDN. Put the data into ./dataset/GOF_Train, and the contents of directories are as follows:

./dataset/GOF_Train
├── sample_0
│   ├── img1.png
│   ├── img2.png
│   ├── gyro_homo.npy
├── sample_1
│   ├── img1.png
│   ├── img2.png
│   ├── gyro_homo.npy
.....................
├── sample_1999
│   ├── img1.png
│   ├── img2.png
│   ├── gyro_homo.npy

GOF-Clean

For quantitative evaluation, including input frames and the corresponding gyro readings, a ground-truth optical flow is required for each pair.

The download link is GoogleDrive or CDN. Move the file to ./dataset/GOF_Clean.npy.

GOF-Final

The most difficult cases are collected in GOF-Final.

The download link is GoogleDrive or CDN. Move the file to ./dataset/GOF_Final.npy.

Training and Evaluation

Training

To train the model, you can just run:

python train.py --model_dir experiments

Evaluation

Load the pretrained checkpoint and run:

python evaluate.py --model_dir experiments --restore_file experiments/val_model_best.pkl

We've updated the GOF (both trainset and testset), so the performance is a little bit different from the results reported in our paper.

MegEngine checkpoint can be download via Google Drive or CDN.

Citation

If you think this work is useful for your research, please kindly cite:

@InProceedings{Li_2021_ICCV,
    author    = {Li, Haipeng and Luo, Kunming and Liu, Shuaicheng},
    title     = {GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {12869-12878}
}

Acknowledgments

In this project we use (parts of) the official implementations of the following works:

We thank the respective authors for open sourcing their methods.

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022