Computationally efficient algorithm that identifies boundary points of a point cloud.

Overview

BoundaryTest

Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation given a point cloud.

This package implements algorithms described in the paper

Calder, Park, and Slepčev. Boundary Estimation from Point Clouds: Algorithms, Guarantees and Applications. arXiv:2111.03217, 2021.

Download package

You can download the package with the Code button above or by cloning the repository with either of the commands below

git clone [email protected]:sangmin-park0/BoundaryTest
git clone https://github.com/sangmin-park0/BoundaryTest

depending on whether you prefer ssh (first) or https (second).

Usage (MATLAB package)

To use the MATLAB package, simply download the files under the folder bd_test_MATLAB.

  1. If you would like to run some quick examples in a Euclidean space, use the function distballann_norm. You can call the function by
[BP1,BP2,dtb, dtb2] = distballann_norm(n,r,L, eps, domain,dim)

Input arguments are: n (number of points), r (test radius), L (Lipschitz constant of the density from which the points are randomly sampled), eps (boundary thickness), domain (type of domain; 1 for a ball and 2 for an annulus), dim (dimension of the domain).

Outputs are: BP1 and BP2 (boundary points according to 1st order and 2nd order tests respectively, as described in the paper), dtb and dtb2 (the estimated distances from each point to the boundary, again according to 1st and 2nd order tests respectively). For example, the following code

distballann_norm(3000,0.18,2,0.03, 1, 3)

will sample n=3000 points from a ball in d=3 dimensions with radius 0.5 (fixed) from a density with Lipschitz constant L=2, then perform boundary test using the neighborhood radius r=0.18 and boundary thickness eps=0.03. Another example for the annulus, is

distballann_norm(9000,0.18,2,0.03, 2, 3)

This function will also output the following plots:

  • plot of true distance (black) versus dtb (blue hollow dots) and dtb2 (red hollow dots)
  • if the dimension is 2, the plot of the point cloud (black) and the boundary points from the 2nd order test (red hollow dots)
  1. If you already have a point cloud in a Euclidean space and the indices of points you wish to test for boundary, that's also fine! To compute boundary points with test do the following
nvec = estimated_normal(pts,r)
[bdry_pts,bdry_idx,dists] = bd_Test(pts,nvec,eps,r,test_type,test_idx)

here, the input arguments are: pts (point cloud), r (neighborhood radius), eps (thickness of the boundary region we want to identify), test_type (type of the test: 1 for 1st order, 2 for 2nd order; optional, and default value=2) test_idx (indices we wish to test for the boundary;optional, and default setting tests all points). Outputs are bdry_pts (boundary points), bdry_idx (indices of boundary points, as a subset of pts), and dists (estimated distances of tested points).

If you have a point cloud that lies in some lower-dimensional manifold embedded in a Euclidean space, instead of bd_test, use bd_test_manif in the following way

[bdry_pts,bdry_idx,dists] = bd_Test_manif(pts,nvec,eps,r,test_idx)

to obtain the same output. Again, test_idx is an optional argument, and default setting tests all points. In the manifold setting, the algorithm uses only the 2nd order test.

Usage (Python)

The Python boundary statistic is implemented in the GraphLearning Python package. Install the development version of GraphLearning from GitHub

git clone https://github.com/jwcalder/GraphLearning
cd GraphLearning
python setup.py install --user

The other required package is Annoy for fast approximate nearest neighbor searches, which should be automatically installed during the graph learning install. The 3D visualizations from our paper are generated with the Mayavi package. Mayavi can be difficult to install and currently has many issues, so any Python code related to Mayavi is commented out. If you have a working Mayavi installation, you can uncomment that code at your convenience to generate 3D visualizations of the solutions to PDEs on point clouds.

The main function for computing the boundary statistic is graphlearning.boundary_statistic. Below is an example showing how to finding boundary points from a random point cloud on the unit box in two dimensions.

import numpy as np
import graphlearning as gl

n = 5000
X = numpy.random.rand(n,2)  

r = 0.1    #Radius for boundary statistic
eps = 0.02 #Size of boundary tube to detect
S = gl.boundary_statistic(X,r)
bdy_pts = np.arange(n)[S < 3*eps/2]  #Boundary test to find boundary points

The full usage of graphlearning.boundary_statistic is copied below for convenience, and the Python folder has scripts for running the experiments from our paper concerned with solving PDEs on point clouds and detecting the boundary and depth of MNIST images. The only required arguments are X and r. Note that the function supports using a rangesearch or knnsearch for neighborhood identification for the test.

def boundary_statistic(X,r,knn=False,ReturnNormals=False,SecondOrder=True,CutOff=True,I=None,J=None,D=None):
    """Computes boundary detection statistic
    Args:
        X: nxd point cloud of points in dimension d
        r: radius for test (or number of neighbors if knn=True)
        knn: Use knn version of test (interprets r as number of neighbors)
        ReturnNormals: Whether to return normal vectors as well
        SecondOrder: Use second order test
        CutOff: Whether to use CutOff for second order test.
        I,J,D: Output of knnsearch (Optional, improves runtime if already available)
    Returns:
        Length n numpy array of test statistic. If ReturnNormals=True, then normal vectors are return as a second argument.
    """

Contact and questions

Please email [email protected] with any questions or comments.

Acknowledgements

Following people have contributed to the development of this software:

  1. Jeff Calder (University of Minnesota)

  2. Dejan Slepčev (Carnegie Mellon University)

License

MIT

This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022