Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

Related tags

Deep LearningDAGSurv
Overview

DAGSurv

Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a parametric probabilistic function of fully or partially observed covariates. All the existing technique for survival analysis assume that the covariates are statistically independent. To integrate the cause-effect relationship between covariates and the time-to-event outcome, we present to you DAGSurv which encodes the causal DAG structure into the analysis of temporal data and eventually leads to better results (higher Concordance Index).

plot

Dependencies

This code requires the following key dependencies:

  • Python 3.8
  • torch==1.6.0
  • pycox==0.2.1

Usage

To train the DAGSurv model, please run the main.py as python main.py

There are a number of hyper-parameters present in the script which can be easily changed.

Experiments

We evaluated our approach on two real-world and two synthetic datasets; and used time-dependent Concordance Index(C-td) as our evaluation metric.

Real-World Datasets

  • METABRIC : The Molecular Taxonomy of Breast Cancer International Consor- tium (METABRIC) is a clinical dataset which consists of gene expressions used to determine different subgroups of breast cancer. We consider the data for 1,904 patients with each patient having 9 covariates. Furthermore, out of the total 1,904 patients, 801 (42.06%) are right-censored, and the rest are deceased (event).
  • GBSG : Rotterdam and German Breast Cancer Study Group (GBSG) contains breast-cancer data from Rotterdam Tumor bank. The dataset consists of 2,232 patients out of which 965 (43.23%) are right-censored, remaining are deceased (event), and there were no missing values. In total, there were 7 features per patient.

Time-Dependent Concordance Index(C-td)

We employ the time-dependent concordance index (CI) as our evaluation metric since it is robust to changes in the survival risk over time. Mathematically it is given as,

plot

Results

Here, we present our results on the two real-world datasets mentioned above -

Model/Experiment METABRIC GBSG
DAGSurv 0.7323 ± 0.0056 0.6892 ± 0.0023
DeepHit 0.7309 ± 0.0047 0.6602 ± 0.0026
DeepSurv 0.6575 ± 0.0021 0.6651 ± 0.0020
CoxTime 0.6679 ± 0.0020 0.6687 ± 0.0019

Code References

[1] Yue Yu, Jie Chen, Tian Gao, Mo Yu. "DAG-GNN: DAG Structure Learning with Graph Neural Networks."
[2] Changhee Lee, William R. Zame, Jinsung Yoon, Mihaela van der Schaar. "DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks."

Owner
Rahul Kukreja
Rahul Kukreja
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022