(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

Overview

RDPNet

IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

PyTorch training and testing code are available. We have achieved SOTA performance on the salient instance segmentation (SIS) task.

If you run into any problems or feel any difficulties to run this code, do not hesitate to leave issues in this repository.

My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

[Official Ver.] [PDF]

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{wu2021regularized,
   title={Regularized Densely-Connected Pyramid Network for Salient Instance Segmentation},
   volume={30},
   ISSN={1941-0042},
   DOI={10.1109/tip.2021.3065822},
   journal={IEEE Transactions on Image Processing},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Wu, Yu-Huan and Liu, Yun and Zhang, Le and Gao, Wang and Cheng, Ming-Ming},
   year={2021},
   pages={3897–3907}
}

Requirements

  • PyTorch 1.1/1.0.1, Torchvision 0.2.2.post3, CUDA 9.0/10.0/10.1, apex
  • Validated on Ubuntu 16.04/18.04, PyTorch 1.1/1.0.1, CUDA 9.0/10.0/10.1, NVIDIA TITAN Xp

Installing

Please check INSTALL.md.

Note: we have provided an early tested apex version (url: here) and place it in our root folder (./apex/). You can also try other apex versions, which are not tested by us.

Data

Before training/testing our network, please download the data: [Google Drive, 0.7G], [Baidu Yun, yhwu].

The above zip file contains data of the ISOD and SOC dataset.

Note: if you are blocked by Google and Baidu services, you can contact me via e-mail and I will send you a copy of data and model weights.

We have processed the data to json format so you can use them without any preprocessing steps. After completion of downloading, extract the data and put them to ./datasets/ folder. Then, the ./datasets/ folder should contain two folders: isod/, soc/.

Train

It is very simple to train our network. We have prepared a script to run the training step. You can at first train our ResNet-50-based network on the ISOD dataset:

cd scripts
bash ./train_isod.sh

The training step should cost less than 1 hour for single GTX 1080Ti or TITAN Xp. This script will also store the network code, config file, log, and model weights.

We also provide ResNet-101 and ResNeXt-101 training scripts, and they are all in the scripts folder.

The default training code is for single gpu training since the training time is very low. You can also try multi gpus training by replacing --nproc_per_node=1 \ with --nproc_per_node=2 \ for 2-gpu training.

Test / Evaluation / Results

It is also very simple to test our network. First you need to download the model weights:

Taking the test on the ISOD dataset for example:

  1. Download the ISOD trained model weights, put it to model_zoo/ folder.
  2. cd the scripts folder, then run bash test_isod.sh.
  3. Testing step usually costs less than a minute. We use the official cocoapi for evaluation.

Note1: We strongly recommend to use cocoapi to evaluate the performance. Such evaluation is also automatically done with the testing process.

Note2: Default cocoapi evaluation outputs AP, AP50, AP75 peformance. To output the score of AP70, you need to change the cocoeval.py in cocoapi. See changes in this commitment:

BEFORE: stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
AFTER:  stats[2] = _summarize(1, iouThr=.70, maxDets=self.params.maxDets[2])

Note3: If you are not familiar with the evalutation metric AP, AP50, AP75, you can refer to the introduction website here. Our official paper also introduces them in the Experiments section.

Visualize

We provide a simple python script to visualize the result: demo/visualize.py.

  1. Be sure that you have downloaded the ISOD pretrained weights [Google Drive, 0.14G].
  2. Put images to the demo/examples/ folder. I have prepared some images in this paper so do not worry that you have no images.
  3. cd demo, run python visualize.py
  4. Visualized images are generated in the same folder. You can change the target folder in visualize.py.

TODO

  1. Release the weights for real-world applications
  2. Add Jittor implementation
  3. Train with the enhanced base detector (FCOS TPAMI version) for better performance. Currently the base detector is the FCOS conference version with a bit lower performance.

Other Tips

I am free to answer your question if you are interested in salient instance segmentation. I also encourage everyone to contact me via my e-mail. My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

Acknowlogdement

This repository is built under the help of the following three projects for academic use only:

Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022