(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

Overview

RDPNet

IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

PyTorch training and testing code are available. We have achieved SOTA performance on the salient instance segmentation (SIS) task.

If you run into any problems or feel any difficulties to run this code, do not hesitate to leave issues in this repository.

My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

[Official Ver.] [PDF]

Citations

If you are using the code/model/data provided here in a publication, please consider citing:

@article{wu2021regularized,
   title={Regularized Densely-Connected Pyramid Network for Salient Instance Segmentation},
   volume={30},
   ISSN={1941-0042},
   DOI={10.1109/tip.2021.3065822},
   journal={IEEE Transactions on Image Processing},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Wu, Yu-Huan and Liu, Yun and Zhang, Le and Gao, Wang and Cheng, Ming-Ming},
   year={2021},
   pages={3897–3907}
}

Requirements

  • PyTorch 1.1/1.0.1, Torchvision 0.2.2.post3, CUDA 9.0/10.0/10.1, apex
  • Validated on Ubuntu 16.04/18.04, PyTorch 1.1/1.0.1, CUDA 9.0/10.0/10.1, NVIDIA TITAN Xp

Installing

Please check INSTALL.md.

Note: we have provided an early tested apex version (url: here) and place it in our root folder (./apex/). You can also try other apex versions, which are not tested by us.

Data

Before training/testing our network, please download the data: [Google Drive, 0.7G], [Baidu Yun, yhwu].

The above zip file contains data of the ISOD and SOC dataset.

Note: if you are blocked by Google and Baidu services, you can contact me via e-mail and I will send you a copy of data and model weights.

We have processed the data to json format so you can use them without any preprocessing steps. After completion of downloading, extract the data and put them to ./datasets/ folder. Then, the ./datasets/ folder should contain two folders: isod/, soc/.

Train

It is very simple to train our network. We have prepared a script to run the training step. You can at first train our ResNet-50-based network on the ISOD dataset:

cd scripts
bash ./train_isod.sh

The training step should cost less than 1 hour for single GTX 1080Ti or TITAN Xp. This script will also store the network code, config file, log, and model weights.

We also provide ResNet-101 and ResNeXt-101 training scripts, and they are all in the scripts folder.

The default training code is for single gpu training since the training time is very low. You can also try multi gpus training by replacing --nproc_per_node=1 \ with --nproc_per_node=2 \ for 2-gpu training.

Test / Evaluation / Results

It is also very simple to test our network. First you need to download the model weights:

Taking the test on the ISOD dataset for example:

  1. Download the ISOD trained model weights, put it to model_zoo/ folder.
  2. cd the scripts folder, then run bash test_isod.sh.
  3. Testing step usually costs less than a minute. We use the official cocoapi for evaluation.

Note1: We strongly recommend to use cocoapi to evaluate the performance. Such evaluation is also automatically done with the testing process.

Note2: Default cocoapi evaluation outputs AP, AP50, AP75 peformance. To output the score of AP70, you need to change the cocoeval.py in cocoapi. See changes in this commitment:

BEFORE: stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
AFTER:  stats[2] = _summarize(1, iouThr=.70, maxDets=self.params.maxDets[2])

Note3: If you are not familiar with the evalutation metric AP, AP50, AP75, you can refer to the introduction website here. Our official paper also introduces them in the Experiments section.

Visualize

We provide a simple python script to visualize the result: demo/visualize.py.

  1. Be sure that you have downloaded the ISOD pretrained weights [Google Drive, 0.14G].
  2. Put images to the demo/examples/ folder. I have prepared some images in this paper so do not worry that you have no images.
  3. cd demo, run python visualize.py
  4. Visualized images are generated in the same folder. You can change the target folder in visualize.py.

TODO

  1. Release the weights for real-world applications
  2. Add Jittor implementation
  3. Train with the enhanced base detector (FCOS TPAMI version) for better performance. Currently the base detector is the FCOS conference version with a bit lower performance.

Other Tips

I am free to answer your question if you are interested in salient instance segmentation. I also encourage everyone to contact me via my e-mail. My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

Acknowlogdement

This repository is built under the help of the following three projects for academic use only:

Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022