Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

Overview

TradingGym

Build Status

TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated the framework form. Not only traning env but also has backtesting and in the future will implement realtime trading env with Interactivate Broker API and so on.

This training env originally design for tickdata, but also support for ohlc data format. WIP.

Installation

git clone https://github.com/Yvictor/TradingGym.git
cd TradingGym
python setup.py install

Getting Started

import random
import numpy as np
import pandas as pd
import trading_env

df = pd.read_hdf('dataset/SGXTW.h5', 'STW')

env = trading_env.make(env_id='training_v1', obs_data_len=256, step_len=128,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'Volume', 
                                      'Ask_price','Bid_price', 
                                      'Ask_deal_vol','Bid_deal_vol',
                                      'Bid/Ask_deal', 'Updown'])

env.reset()
env.render()

state, reward, done, info = env.step(random.randrange(3))

### randow choice action and show the transaction detail
for i in range(500):
    print(i)
    state, reward, done, info = env.step(random.randrange(3))
    print(state, reward)
    env.render()
    if done:
        break
env.transaction_details
  • obs_data_len: observation data length
  • step_len: when call step rolling windows will + step_len
  • df exmaple
index datetime bid ask price volume serial_number dealin
0 2010-05-25 08:45:00 7188.0 7188.0 7188.0 527.0 0.0 0.0
1 2010-05-25 08:45:00 7188.0 7189.0 7189.0 1.0 1.0 1.0
2 2010-05-25 08:45:00 7188.0 7189.0 7188.0 1.0 2.0 -1.0
3 2010-05-25 08:45:00 7188.0 7189.0 7188.0 4.0 3.0 -1.0
4 2010-05-25 08:45:00 7188.0 7189.0 7188.0 2.0 4.0 -1.0
  • df: dataframe that contain data for trading

serial_number -> serial num of deal at each day recalculating

  • fee: when each deal will pay the fee, set with your product.
  • max_position: the max market position for you trading share.
  • deal_col_name: the column name for cucalate reward used.
  • feature_names: list contain the feature columns to use in trading status.

gif

Training

simple dqn

  • WIP

policy gradient

  • WIP

actor-critic

  • WIP

A3C with RNN

  • WIP

Backtesting

  • loading env just like training
env = trading_env.make(env_id='backtest_v1', obs_data_len=1024, step_len=512,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                        feature_names=['Price', 'Volume', 
                                       'Ask_price','Bid_price', 
                                       'Ask_deal_vol','Bid_deal_vol',
                                       'Bid/Ask_deal', 'Updown'])
  • load your own agent
class YourAgent:
    def __init__(self):
        # build your network and so on
        pass
    def choice_action(self, state):
        ## your rule base conditon or your max Qvalue action or Policy Gradient action
         # action=0 -> do nothing
         # action=1 -> buy 1 share
         # action=2 -> sell 1 share
        ## in this testing case we just build a simple random policy 
        return np.random.randint(3)
  • start to backtest
agent = YourAgent()

transactions = []
while not env.backtest_done:
    state = env.backtest()
    done = False
    while not done:
        state, reward, done, info = env.step(agent.choice_action(state))
        #print(state, reward)
        #env.render()
        if done:
            transactions.append(info)
            break
transaction = pd.concate(transactions)
transaction
step datetime transact transact_type price share price_mean position reward_fluc reward reward_sum color rotation
2 1537 2013-04-09 10:58:45 Buy new 277.1 1.0 277.100000 1.0 0.000000e+00 0.000000e+00 0.000000 1 1
5 3073 2013-04-09 11:47:26 Sell cover 276.8 -1.0 277.100000 0.0 -4.000000e-01 -4.000000e-01 -0.400000 2 2
10 5633 2013-04-09 13:23:40 Sell new 276.9 -1.0 276.900000 -1.0 0.000000e+00 0.000000e+00 -0.400000 2 1
11 6145 2013-04-09 13:30:36 Sell new 276.7 -1.0 276.800000 -2.0 1.000000e-01 0.000000e+00 -0.400000 2 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...
211 108545 2013-04-19 13:18:32 Sell new 286.7 -1.0 286.525000 -2.0 -4.500000e-01 0.000000e+00 30.650000 2 1
216 111105 2013-04-19 16:02:01 Sell new 289.2 -1.0 287.416667 -3.0 -5.550000e+00 0.000000e+00 30.650000 2 1
217 111617 2013-04-19 17:54:29 Sell new 289.2 -1.0 287.862500 -4.0 -5.650000e+00 0.000000e+00 30.650000 2 1
218 112129 2013-04-19 21:36:21 Sell new 288.0 -1.0 287.890000 -5.0 -9.500000e-01 0.000000e+00 30.650000 2 1
219 112129 2013-04-19 21:36:21 Buy cover 288.0 5.0 287.890000 0.0 0.000000e+00 -1.050000e+00 29.600000 1 2

128 rows × 13 columns

exmaple of rule base usage

  • ma crossover and crossunder
env = trading_env.make(env_id='backtest_v1', obs_data_len=10, step_len=1,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'MA'])
class MaAgent:
    def __init__(self):
        pass
        
    def choice_action(self, state):
        if state[-1][0] > state[-1][1] and state[-2][0] <= state[-2][1]:
            return 1
        elif state[-1][0] < state[-1][1] and state[-2][0] >= state[-2][1]:
            return 2
        else:
            return 0
# then same as above
Owner
Yvictor
Yvictor
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022