Julia package for multiway (inverse) covariance estimation.

Overview

TensorGraphicalModels

TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inverse covariance matrices.

Installation

] add https://github.com/ywa136/TensorGraphicalModels.jl

Examples

Please check out a Julia colab created for illustration of some functionalities of the package. Here are some basic examples as well:

Example code for fitting a KP inverse covariance model:

using TensorGraphicalModels

model_type = "kp"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list) #multi-dimensional array (tensor) of dimension d_1 × … × d_K × N
Ψ_hat_list = kglasso(X)

Example code for fitting a KS inverse covariance model:

using TensorGraphicalModels

model_type = "ks"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Ψ_hat_list, _ = teralasso(X_kGram)

Example code for fitting a Sylvester inverse covariance model:

using TensorGraphicalModels

model_type = "sylvester"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Psi0 = [sparse(eye(d_list[k])) for k = 1:K]
fun = (iter, Psi) -> [1, time()] # NULL func
lambda = [sqrt(px[k] * log(prod(d_list)) / N) for k = 1:K] 

Ψ_hat_list, _ = syglasso_palm(X, X_kGram, lambda, Psi0, fun = fun)

Example code for fitting a KPCA covariance model:

using TensorGraphicalModels

px = py = 25 #works for K=2 modes only
N = 100
X = zeros((px * py, N))

for i=1:N
    X[:, i] .= vec(rand(MatrixNormal(zeros((px, py)), ScalMat(px, 2.0), ScalMat(py, 4.0))))
end

S = cov(copy(X')) #sample covariance matrix
lambdaL = 20 * (px^2 + py^2 + log(max(px, py, N))) / N
lambdaS = 20 * sqrt(log(px * py)/N)

# robust Kronecker PCA methods using singular value thresholding
Sigma_hat = robust_kron_pca(S, px, py, lambdaL, lambdaS, "SVT"; tau = 0.5, r = 5)
Owner
Wayne Wang
Ph.D. candidate in statistics
Wayne Wang
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022