Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Related tags

Deep LearningCRT
Overview

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022)

All scripts were written and edited by Dae Woong Ham on 01/27/2022

Code Overview

Plotting previous empirical results (Fig 1, Fig 2)

  • "Section2_AMCE_plots/immigration_Fig1.R" produces Figure 1 AMCE plots based on original AMCE estimates
  • "Section2_AMCE_plots/gender_Fig2.R" produces Figure 2 AMCE plots based on original AMCE estimates

All simulation plots (Fig 3, 4, 5, 6, 7)

  • All simulations are plotted through "Simulations/all_simulation_plots.R" file
  • All simulation scripts are executed through "source/left_fig_simulation.sh" or "source/right_fig_simulation.sh"
  • "Simulations/Section4/Figure3_leftplot.R"/"Simulations/Section4/Figure3_rightplot.R" produces results of Fig 3 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure4_and_6_leftplot.R"/"Simulations/Section4/Figure4_and_6_rightplot.R" produces results of Fig 4 and 6 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure5_leftplot.R"/"Simulations/Section4/Figure5_rightplot.R" produces results of Fig 5 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure7.R" produces results of Fig 7 # less than 5 minutes of computing time on FAS computing cluster

Obtaining new p-values (Section 5 and Table 1)

  • All p-values in Section 5 are summarized and obtained in "Section5_ApplicationResults/pval_analysis.R"
  • "Section5_ApplicationResults/Immigration/main_analysis/obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 1. # 30 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/AMCE_pval.do" produces AMCE p-value in Table 1 row 1 column 2. #less than 5 seconds of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/profile_order_effect.R"/"Section5_ApplicationResults/Immigration/main_analysis/profile_order_effect/resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 3. # 10 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/carryover_effect_obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/carryover_effect_resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 4. # 30 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/fatigue_effect_obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/fatigue_effect_resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 5. # 24 minutes of computing time
  • To obtain p-value for second row repeat above but for "Section5_ApplicationResults/Gender/..." # Approximate computation time is listed in the individual files
  • Each application also contains "../lasso_obs_test_stat.R"/"../lasso_resampled_test_stats.R" to produce supplementary main effect analysis in Section 5
  • "Section5_ApplicationResults/Immigration/with_ethnocentrism/" contains files to produce p-value when including ethnocentrism in Section 5.1
  • "Section5_ApplicationResults/gender/supplementary_analysis/" contains files to produce p-value when performing robustness analysis using second most significant interaction in Appendix
  • "Section5_ApplicationResults/gender/main_analysis/presidential_lasso_explore.R" contains script to find which interaction is strongest in Presidential dataset

Other folders

  • "data" folder contains all relevant datasets in both Immigration and gender conjoint examples and all the saved results of p-values in simulations and test statistics for Section 5
  • "Figures" folder contains all figures
  • "source" folder contains all helper and main functions to run above scripts (including data cleaning, obtaining test statistics, generating simulation datasets). In particular "source/hiernet_source.R" contains the main function to compute all HierNet test statistics in the paper.

Environment

  • R version 4.1.0
  • 200 cores for all scripts that required parallel computing
  • All parallel computations in this paper were run on the FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at Harvard University
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023