Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Overview

ood-text-emnlp

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Files

  • fine_tune.py is used to finetune the GPT-2 models, and roberta_fine_tune.py is used to finetune the Roberta models.
  • perplexity.py and msp_eval.py is used to find the PPLs and MSPs of a dataset pair's exxamples using the finetuned model.

How to run

These steps show how to train both density estimation and calibration models on the MNLI dataset, and evaluated against SNLI.

A differet dataset pair can be used by updating the approriate dataset_name or id_data/ood_data values as shown below:

Training the Density Estimation Model (GPT-2)

Two options:

  1. Using HF Datasets -
    python fine_tune.py --dataset_name glue --dataset_config_name mnli --key premise --key2 hypothesis
    
    This also generates a txt train file corresponding to the dataset's text.
  2. Using previously generated txt file -
    python fine_tune.py --train_file data/glue_mnli_train.txt --fname glue_mnli"
    

Finding Perplexity (PPL)

This uses the txt files generated after running fine_tune.py to find the perplexity of the ID model on both ID and OOD validation sets -

id_data="glue_mnli"
ood_data="snli"
python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${ood_data}_val.txt --fname ${id_data}_$ood_data

python perplexity.py --model_path ckpts/gpt2-$id_data/ --dataset_path data/${id_data}_val.txt --fname ${id_data}_$id_data

Training the Calibration Model (RoBERTa)

Two options:

  1. Using HF Datasets -

    id_data="mnli"
    python roberta_fine_tune.py --task_name $id_data --output_dir /scratch/ua388/roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data
    
  2. Using txt file generated earlier -

    id_data="mnli"
    python roberta_fine_tune.py --train_file data/mnli/${id_data}_conditional_train.txt --val_file data/mnli/${id_data}_val.txt --output_dir roberta_ckpts/roberta-$id_data --fname ${id_data}_$id_data"
    

    The *_conditional_train.txt file contains both the labels as well as the text.

Finding Maximum Softmax Probability (MSP)

Two options:

  1. Using HF Datasets -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --dataset_name $ood_data --fname ${id_data}_$ood_data
    
  2. Using txt file generated earlier -
    id_data="mnli"
    ood_data="snli"
    python msp_eval.py --model_path roberta_ckpts/roberta-$id_data --val_file data/${ood_data}_val.txt --fname ${id_data}_$ood_data --save_msp True
    

Evaluating AUROC

  1. Compute AUROC of PPL using compute_auroc in utils.py -

    id_data = 'glue_mnli'
    ood_data = 'snli'
    id_pps = utils.read_model_out(f'output/gpt2/{id_data}_{id_data}_pps.npy')
    ood_pps = utils.read_model_out(f'output/gpt2/{id_data}_{ood_data}_pps.npy')
    score = compute_auroc(id_pps, ood_pps)
    print(score)
    
  2. Compute AUROC of MSP -

     id_data = 'mnli'
     ood_data = 'snli'
     id_msp = utils.read_model_out(f'output/roberta/{id_data}_{id_data}_msp.npy')
     ood_msp = utils.read_model_out(f'output/roberta/{id_data}_{ood_data}_msp.npy')
     score = compute_auroc(-id_msp, -ood_msp)
     print(score)
    
Owner
Udit Arora
CS grad student at NYU
Udit Arora
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
Xintao 1.4k Dec 25, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022