Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Overview

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

report report

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation,
Zicong Fan, Adrian Spurr, Muhammed Kocabas, Siyu Tang, Michael J. Black, Otmar Hilliges International Conference on 3D Vision (3DV), 2021

Image

Features

DIGIT estimates the 3D poses of two interacting hands from a single RGB image. This repo provides the training, evaluation, and demo code for the project in PyTorch Lightning.

Updates

  • November 25 2021: Initial repo with training and evaluation on PyTorch Lightning 0.9.

Setting up environment

DIGIT has been implemented and tested on Ubuntu 18.04 with python >= 3.7, PyTorch Lightning 0.9 and PyTorch 1.6.

Clone the repo:

git clone https://github.com/zc-alexfan/digit-interacting

Create folders needed:

make folders

Install conda environment:

conda create -n digit python=3.7
conda deactivate
conda activate digit
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
pip install -r requirements.txt

Downloading InterHand2.6M

  • Download the 5fps.v1 of InterHand2.6M, following the instructions here
  • Place annotations, images, and rootnet_output from InterHand2.6M under ./data/InterHand/*:
./data/InterHand
├── annotations
├── images
│   ├── test
│   ├── train
│   └── val
├── rootnet_output
│   ├── rootnet_interhand2.6m_output_all_test.json
│   └── rootnet_interhand2.6m_output_machine_annot_val.json
|-- annotations
|-- images
|   |-- test
|   |-- train
|   `-- val
`-- rootnet_output
    |-- rootnet_interhand2.6m_output_test.json
    `-- rootnet_interhand2.6m_output_val.json
  • The folder ./data/InterHand/annotations should look like this:
./data/InterHand/annotations
|-- skeleton.txt
|-- subject.txt
|-- test
|   |-- InterHand2.6M_test_MANO_NeuralAnnot.json
|   |-- InterHand2.6M_test_camera.json
|   |-- InterHand2.6M_test_data.json
|   `-- InterHand2.6M_test_joint_3d.json
|-- train
|   |-- InterHand2.6M_train_MANO_NeuralAnnot.json
|   |-- InterHand2.6M_train_camera.json
|   |-- InterHand2.6M_train_data.json
|   `-- InterHand2.6M_train_joint_3d.json
`-- val
    |-- InterHand2.6M_val_MANO_NeuralAnnot.json
    |-- InterHand2.6M_val_camera.json
    |-- InterHand2.6M_val_data.json
    `-- InterHand2.6M_val_joint_3d.json

Preparing data and backbone for training

Download the ImageNet-pretrained backbone from here and place it under:

./saved_models/pytorch/imagenet/hrnet_w32-36af842e.pt

Package images into lmdb:

cd scripts
python package_images_lmdb.py

Preprocess annotation:

python preprocess_annot.py

Render part segmentation masks:

  • Following the README.md of render_mano_ih to prepare an LMDB of part segmentation. For question in preparing the segmentation masks, please keep issues in there.

Place the LMDB from the images, the segmentation masks, and meta_dict_*.pkl to ./data/InterHand and it should look like the structure below. The cache files meta_dict_*.pkl are by-products of the step above.

|-- annotations
|   |-- skeleton.txt
|   |-- subject.txt
|   |-- test
|   |   |-- InterHand2.6M_test_MANO_NeuralAnnot.json
|   |   |-- InterHand2.6M_test_camera.json
|   |   |-- InterHand2.6M_test_data.json
|   |   |-- InterHand2.6M_test_data.pkl
|   |   `-- InterHand2.6M_test_joint_3d.json
|   |-- train
|   |   |-- InterHand2.6M_train_MANO_NeuralAnnot.json
|   |   |-- InterHand2.6M_train_camera.json
|   |   |-- InterHand2.6M_train_data.json
|   |   |-- InterHand2.6M_train_data.pkl
|   |   `-- InterHand2.6M_train_joint_3d.json
|   `-- val
|       |-- InterHand2.6M_val_MANO_NeuralAnnot.json
|       |-- InterHand2.6M_val_camera.json
|       |-- InterHand2.6M_val_data.json
|       |-- InterHand2.6M_val_data.pkl
|       `-- InterHand2.6M_val_joint_3d.json
|-- cache
|   |-- meta_dict_test.pkl
|   |-- meta_dict_train.pkl
|   `-- meta_dict_val.pkl
|-- images
|   |-- test
|   |-- train
|   `-- val
|-- rootnet_output
|   |-- rootnet_interhand2.6m_output_test.json
|   `-- rootnet_interhand2.6m_output_val.json
`-- segm_32.lmdb

Training and evaluating

To train DIGIT, run the command below. The script runs at a batch size of 64 using accumulated gradient where each iteration is on a batch size 32:

python train.py --iter_batch 32 --batch_size 64 --gpu_ids 0 --trainsplit train --precision 16 --eval_every_epoch 2 --lr_dec_epoch 40 --max_epoch 50 --min_epoch 50

OR if you just want to do a sanity check you can run:

python train.py --iter_batch 32 --batch_size 64 --gpu_ids 0 --trainsplit minitrain --valsplit minival --precision 16 --eval_every_epoch 1 --max_epoch 50 --min_epoch 50

Each time you run train.py, it will create a new experiment under logs and each experiment is assigned a key.

Supposed your experiment key is 2e8c5136b, you can evaluate the last epoch of the model on the test set by:

python test.py --eval_on minitest --load_ckpt logs/2e8c5136b/model_dump/last.ckpt

OR

python test.py --eval_on test --load_ckpt logs/2e8c5136b/model_dump/last.ckpt

The former only does the evaluation 1000 images for a sanity check.

Similarly, you can evaluate on the validation set:

python test.py --eval_on val --load_ckpt logs/2e8c5136b/model_dump/last.ckpt

Visualizing and evaluating pre-trained DIGIT

Here we provide instructions to show qualitative results of DIGIT.

Download pre-trained DIGIT:

wget https://dataset.ait.ethz.ch/downloads/dE6qPPePCV/db7cba8c1.pt
mv db7cba8c1.pt saved_models

Visualize results:

CUDA_VISIBLE_DEVICES=0 python demo.py --eval_on minival --load_from saved_models/db7cba8c1.pt  --num_workers 0

Evaluate pre-trained digit:

CUDA_VISIBLE_DEVICES=0 python test.py --eval_on test --load_from saved_models/db7cba8c1.pt --precision 16
CUDA_VISIBLE_DEVICES=0 python test.py --eval_on val --load_from saved_models/db7cba8c1.pt --precision 16

You should have the same results as in here.

The results will be dumped to ./visualization.

Citation

@inProceedings{fan2021digit,
  title={Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-pixel Part Segmentation},
  author={Fan, Zicong and Spurr, Adrian and Kocabas, Muhammed and Tang, Siyu and Black, Michael and Hilliges, Otmar},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}
}

License

Since our code is developed based on InterHand2.6M, which is CC-BY-NC 4.0 licensed, the same LICENSE is applied to DIGIT.

DIGIT is CC-BY-NC 4.0 licensed, as found in the LICENSE file.

References

Some code in our repo uses snippets of the following repo:

Please consider citing them if you find our code useful:

@inproceedings{Moon_2020_ECCV_InterHand2.6M,  
author = {Moon, Gyeongsik and Yu, Shoou-I and Wen, He and Shiratori, Takaaki and Lee, Kyoung Mu},  
title = {InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image},  
booktitle = {European Conference on Computer Vision (ECCV)},  
year = {2020}  
}  

@inproceedings{sun2019deep,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={CVPR},
  year={2019}
}

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}

@misc{Charles2013,
  author = {milesial},
  title = {Pytorch-UNet},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/milesial/Pytorch-UNet}}
}

Contact

For any question, you can contact [email protected].

Owner
Zicong Fan
A Ph.D. student at ETH Zurich.
Zicong Fan
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022