Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

Overview

NeRF++

Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

  • Work with 360 capture of large-scale unbounded scenes.
  • Support multi-gpu training and inference with PyTorch DistributedDataParallel (DDP).
  • Optimize per-image autoexposure (experimental feature).

Demo

Data

  • Download our preprocessed data from tanks_and_temples, lf_data.
  • Put the data in the sub-folder data/ of this code directory.
  • Data format.
    • Each scene consists of 3 splits: train/test/validation.
    • Intrinsics and poses are stored as flattened 4x4 matrices (row-major).
    • Pixel coordinate of an image's upper-left corner is (column, row)=(0, 0), lower-right corner is (width-1, height-1).
    • Poses are camera-to-world, not world-to-camera transformations.
    • Opencv camera coordinate system is adopted, i.e., x--->right, y--->down, z--->scene. Similarly, intrinsic matrix also follows Opencv convention.
    • To convert camera poses between Opencv and Opengl conventions, the following code snippet can be used for both Opengl2Opencv and Opencv2Opengl.
      import numpy as np
      def convert_pose(C2W):
          flip_yz = np.eye(4)
          flip_yz[1, 1] = -1
          flip_yz[2, 2] = -1
          C2W = np.matmul(C2W, flip_yz)
          return C2W
    • Scene normalization: move the average camera center to origin, and put all the camera centers inside the unit sphere.

Create environment

conda env create --file environment.yml
conda activate nerfplusplus

Training (Use all available GPUs by default)

python ddp_train_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt

Testing (Use all available GPUs by default)

python ddp_test_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt \
                        --render_splits test,camera_path

Note: due to restriction imposed by torch.distributed.gather function, please make sure the number of pixels in each image is divisible by the number of GPUs if you render images parallelly.

Citation

Plese cite our work if you use the code.

@article{kaizhang2020,
    author    = {Kai Zhang and Gernot Riegler and Noah Snavely and Vladlen Koltun},
    title     = {NeRF++: Analyzing and Improving Neural Radiance Fields},
    journal   = {arXiv:2010.07492},
    year      = {2020},
}

Generate camera parameters (intrinsics and poses) with COLMAP SfM

You can use the scripts inside colmap_runner to generate camera parameters from images with COLMAP SfM.

  • Specify img_dir and out_dir in colmap_runner/run_colmap.py.
  • Inside colmap_runner/, execute command python run_colmap.py.
  • After program finishes, you would see the posed images in the folder out_dir/posed_images.
    • Distortion-free images are inside out_dir/posed_images/images.
    • Raw COLMAP intrinsics and poses are stored as a json file out_dir/posed_images/kai_cameras.json.
    • Normalized cameras are stored in out_dir/posed_images/kai_cameras_normalized.json. See the Scene normalization method in the Data section.
    • Split distortion-free images and kai_cameras_normalized.json according to your need. You might find the self-explanatory script data_loader_split.py helpful when you try converting the json file to data format compatible with NeRF++.

Visualize cameras in 3D

Check camera_visualizer/visualize_cameras.py for visualizing cameras in 3D. It creates an interactive viewer for you to inspect whether your cameras have been normalized to be compatible with this codebase. Below is a screenshot of the viewer: green cameras are used for training, blue ones are for testing, while yellow ones denote a novel camera path to be synthesized; red sphere is the unit sphere.

Inspect camera parameters

You can use camera_inspector/inspect_epipolar_geometry.py to inspect if the camera paramters are correct and follow the Opencv convention assumed by this codebase. The script creates a viewer for visually inspecting two-view epipolar geometry like below: for key points in the left image, it plots their correspoinding epipolar lines in the right image. If the epipolar geometry does not look correct in this visualization, it's likely that there are some issues with the camera parameters.

Owner
Kai Zhang
PhD candidate at Cornell.
Kai Zhang
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022