Code for visualizing the loss landscape of neural nets

Overview

Visualizing the Loss Landscape of Neural Nets

This repository contains the PyTorch code for the paper

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein. Visualizing the Loss Landscape of Neural Nets. NIPS, 2018.

An interactive 3D visualizer for loss surfaces has been provided by telesens.

Given a network architecture and its pre-trained parameters, this tool calculates and visualizes the loss surface along random direction(s) near the optimal parameters. The calculation can be done in parallel with multiple GPUs per node, and multiple nodes. The random direction(s) and loss surface values are stored in HDF5 (.h5) files after they are produced.

Setup

Environment: One or more multi-GPU node(s) with the following software/libraries installed:

Pre-trained models: The code accepts pre-trained PyTorch models for the CIFAR-10 dataset. To load the pre-trained model correctly, the model file should contain state_dict, which is saved from the state_dict() method. The default path for pre-trained networks is cifar10/trained_nets. Some of the pre-trained models and plotted figures can be downloaded here:

Data preprocessing: The data pre-processing method used for visualization should be consistent with the one used for model training. No data augmentation (random cropping or horizontal flipping) is used in calculating the loss values.

Visualizing 1D loss curve

Creating 1D linear interpolations

The 1D linear interpolation method [1] evaluates the loss values along the direction between two minimizers of the same network loss function. This method has been used to compare the flatness of minimizers trained with different batch sizes [2]. A 1D linear interpolation plot is produced using the plot_surface.py method.

mpirun -n 4 python plot_surface.py --mpi --cuda --model vgg9 --x=-0.5:1.5:401 --dir_type states \
--model_file cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=128_wd=0.0_save_epoch=1/model_300.t7 \
--model_file2 cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=8192_wd=0.0_save_epoch=1/model_300.t7 --plot
  • --x=-0.5:1.5:401 sets the range and resolution for the plot. The x-coordinates in the plot will run from -0.5 to 1.5 (the minimizers are located at 0 and 1), and the loss value will be evaluated at 401 locations along this line.
  • --dir_type states indicates the direction contains dimensions for all parameters as well as the statistics of the BN layers (running_mean and running_var). Note that ignoring running_mean and running_var cannot produce correct loss values when plotting two solutions togeather in the same figure.
  • The two model files contain network parameters describing the two distinct minimizers of the loss function. The plot will interpolate between these two minima.

VGG-9 SGD, WD=0

Producing plots along random normalized directions

A random direction with the same dimension as the model parameters is created and "filter normalized." Then we can sample loss values along this direction.

mpirun -n 4 python plot_surface.py --mpi --cuda --model vgg9 --x=-1:1:51 \
--model_file cifar10/trained_nets/vgg9_sgd_lr=0.1_bs=128_wd=0.0_save_epoch=1/model_300.t7 \
--dir_type weights --xnorm filter --xignore biasbn --plot
  • --dir_type weights indicates the direction has the same dimensions as the learned parameters, including bias and parameters in the BN layers.
  • --xnorm filter normalizes the random direction at the filter level. Here, a "filter" refers to the parameters that produce a single feature map. For fully connected layers, a "filter" contains the weights that contribute to a single neuron.
  • --xignore biasbn ignores the direction corresponding to bias and BN parameters (fill the corresponding entries in the random vector with zeros).

VGG-9 SGD, WD=0

We can also customize the appearance of the 1D plots by calling plot_1D.py once the surface file is available.

Visualizing 2D loss contours

To plot the loss contours, we choose two random directions and normalize them in the same way as the 1D plotting.

mpirun -n 4 python plot_surface.py --mpi --cuda --model resnet56 --x=-1:1:51 --y=-1:1:51 \
--model_file cifar10/trained_nets/resnet56_sgd_lr=0.1_bs=128_wd=0.0005/model_300.t7 \
--dir_type weights --xnorm filter --xignore biasbn --ynorm filter --yignore biasbn  --plot

ResNet-56

Once a surface is generated and stored in a .h5 file, we can produce and customize a contour plot using the script plot_2D.py.

python plot_2D.py --surf_file path_to_surf_file --surf_name train_loss
  • --surf_name specifies the type of surface. The default choice is train_loss,
  • --vmin and --vmax sets the range of values to be plotted.
  • --vlevel sets the step of the contours.

Visualizing 3D loss surface

plot_2D.py can make a basic 3D loss surface plot with matplotlib. If you want a more detailed rendering that uses lighting to display details, you can render the loss surface with ParaView.

ResNet-56-noshort ResNet-56

To do this, you must

  1. Convert the surface .h5 file to a .vtp file.
python h52vtp.py --surf_file path_to_surf_file --surf_name train_loss --zmax  10 --log

This will generate a VTK file containing the loss surface with max value 10 in the log scale.

  1. Open the .vtp file with ParaView. In ParaView, open the .vtp file with the VTK reader. Click the eye icon in the Pipeline Browser to make the figure show up. You can drag the surface around, and change the colors in the Properties window.

  2. If the surface appears extremely skinny and needle-like, you may need to adjust the "transforming" parameters in the left control panel. Enter numbers larger than 1 in the "scale" fields to widen the plot.

  3. Select Save screenshot in the File menu to save the image.

Reference

[1] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network optimization problems. ICLR, 2015.

[2] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017.

Citation

If you find this code useful in your research, please cite:

@inproceedings{visualloss,
  title={Visualizing the Loss Landscape of Neural Nets},
  author={Li, Hao and Xu, Zheng and Taylor, Gavin and Studer, Christoph and Goldstein, Tom},
  booktitle={Neural Information Processing Systems},
  year={2018}
}
Owner
Tom Goldstein
Tom Goldstein
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022