This repository lets you interact with Lean through a REPL.

Related tags

Deep Learninglean-gym
Overview

lean-gym

This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-gym.

Setup

# Download pre-built binaries and build the project (targeting mathlib).
bash ./scripts/setup.sh

Usage

lean --run src/repl.lean

Starts a fresh REPL. Once started, the REPL accepts the following commands:

  • init_search: takes a declaration name as well as a list of open namespaces to initialize a search at the given declaration opening the provided namespaces, and returning the initial tactic state (along with a fresh search_id and tactic_state_id).
  • run_tac: takes a search_id, a tactic_state_id and a tactic to apply at the tactic state denoted by the provided ids.
  • clear_search: takes a search_id to clear all state related to a search.

The commands can be interleaved freely enabling the parallelization of multiple proof searches against the same REPL.

$ lean --run src/repl.lean

["init_search", ["intermediate_field.adjoin.range_algebra_map_subset", "intermediate_field finite_dimensional polynomial"]]
{"error":null,"search_id":"0","tactic_state":"⊢ ∀ (F : Type u_1) [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (S : set E),\tset.range ⇑(algebra_map F E) ⊆ ↑(intermediate_field.adjoin F S)","tactic_state_id":"0"}

["init_search", ["int.prime.dvd_mul", ""]]
{"error":null,"search_id":"1","tactic_state":"⊢ ∀ {m n : ℤ} {p : ℕ}, nat.prime p → ↑p ∣ m * n → p ∣ m.nat_abs ∨ p ∣ n.nat_abs","tactic_state_id":"0"}

["run_tac",["0","0","intros"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E\t⊢ set.range ⇑(algebra_map F E) ⊆ ↑(intermediate_field.adjoin F S)","tactic_state_id":"1"}

["run_tac",["1","0","intros"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ m.nat_abs ∨ p ∣ n.nat_abs","tactic_state_id":"1"}

["run_tac",["1","1","apply (nat.prime.dvd_mul hp).mp"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ m.nat_abs * n.nat_abs","tactic_state_id":"2"}

["run_tac",["1","2","rw ← int.nat_abs_mul"]]
{"error":null,"search_id":"1","tactic_state":"m n : ℤ,\tp : ℕ,\thp : nat.prime p,\th : ↑p ∣ m * n\t⊢ p ∣ (m * n).nat_abs","tactic_state_id":"3"}

["run_tac",["1","3","simp"]]
{"error":"run_tac_failed: pos=(some ⟨1, 2⟩) msg=simplify tactic failed to simplify","search_id":null,"tactic_state":null,"tactic_state_id":null}

["run_tac",["1","5","exact int.coe_nat_dvd_left.mp h"]]
{"error":"unknown_id: search_id=1 tactic_state_id=5","search_id":null,"tactic_state":null,"tactic_state_id":null}

["run_tac",["1","3","exact int.coe_nat_dvd_left.mp h"]]
{"error":null,"search_id":"1","tactic_state":"no goals","tactic_state_id":"4"}

["clear_search",["1"]]
{"error":null,"search_id":"1","tactic_state":null,"tactic_state_id":null}

["run_tac",["0","1","intros x hx,"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\thx : x ∈ set.range ⇑(algebra_map F E)\t⊢ x ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"2"}

["run_tac",["0","2","cases hx with f hf"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\tf : F,\thf : ⇑(algebra_map F E) f = x\t⊢ x ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"3"}

["run_tac",["0","3","rw ← hf"]]
{"error":null,"search_id":"0","tactic_state":"F : Type u_1,\t_inst_1 : field F,\tE : Type u_2,\t_inst_2 : field E,\t_inst_3 : algebra F E,\tS : set E,\tx : E,\tf : F,\thf : ⇑(algebra_map F E) f = x\t⊢ ⇑(algebra_map F E) f ∈ ↑(intermediate_field.adjoin F S)","tactic_state_id":"4"}

["run_tac",["0","4","exact adjoin.algebra_map_mem F S f"]]
{"error":null,"search_id":"0","tactic_state":"no goals","tactic_state_id":"5"}

["clear_search",["0"]]
{"error":null,"search_id":"0","tactic_state":null,"tactic_state_id":null}

Declaration names

Declaration names and open namespaces as recorded by lean_proof_recording are available in the data/ directory to be used with the init_search command.

Notes

The REPL is subject to crashes in rare cases. Empirically such crash happens no more than ~0.01% of the time.

When a tactic state is reached with no left goals, some custom logic is run to check that the resulting proof's type matches the top level goal type and does not rely on sorry. We also check for the presence of undefined in the proof term. As an example, the following MiniF2F proofs will safely fail with error proof_validation_failed.

["init_search", ["mathd_algebra_35", ""]]
["run_tac", ["0", "0", "intros"]]
["run_tac", ["0", "1", "sorry"]]
["init_search", ["induction_divisibility_3divnto3m2n", ""]]
["run_tac", ["0", "0", "intros"]]
["run_tac", ["0", "1", "rw [add_comm]"]]
["run_tac", ["0", "2", "have h3 : 1 * (n + 1) ≤ (n + 1)"]]
["run_tac", ["0", "3", "rw one_mul"]]
["run_tac", ["0", "4", "apply dvd_trans"]]
["run_tac", ["0", "5", "swap"]]
["run_tac", ["0", "6", "simp []"]]
["init_search", ["mathd_numbertheory_13", ""]]
["run_tac", ["0", "0", "intros u v hu hv hsum"]]
["run_tac", ["0", "1", "intro h"]]
["run_tac", ["0", "2", "contrapose h"]]
["run_tac", ["0", "3", "intro hn"]]
["run_tac", ["0", "4", "exact not_lt_of_lt hn undefined"]]
Owner
OpenAI
OpenAI
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022