pytorch implementation of dftd2 & dftd3

Overview

torch-dftd

pytorch implementation of dftd2 [1] & dftd3 [2, 3]

Install

# Install from pypi
pip install torch-dftd

# Install from source (for developers)
git clone https://github.com/pfnet-research/torch-dftd
pip install -e .

Quick start

from ase.build import molecule
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator

atoms = molecule("CH3CH2OCH3")
# device="cuda:0" for fast GPU computation.
calc = TorchDFTD3Calculator(atoms=atoms, device="cpu", damping="bj")

energy = atoms.get_potential_energy()
forces = atoms.get_forces()

print(f"energy {energy} eV")
print(f"forces {forces}")

Dependency

The library is tested under following environment.

  • python: 3.6
  • CUDA: 10.2
torch==1.5.1
ase==3.21.1
# Below is only for 3-body term
cupy-cuda102==8.6.0
pytorch-pfn-extras==0.3.2

Development tips

Formatting & Linting

pysen is used to format the python code of this repository.
You can simply run below to get your code formatted :)

# Format the code
$ pysen run format
# Check the code format
$ pysen run lint

CUDA Kernel function implementation with cupy

cupy supports users to implement CUDA kernels within python code, and it can be easily linked with pytorch tensor calculations.
Element wise kernel is implemented and used in some pytorch functions to accelerate speed with GPU.

See document for details about user defined kernel.

Citation

Please always cite original paper of DFT-D2 [1] or DFT-D3 [2, 3], if you used this software for your publication.

DFT-D2:
[1] S. Grimme, J. Comput. Chem, 27 (2006), 1787-1799. DOI: 10.1002/jcc.20495

DFT-D3:
[2] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys, 132 (2010), 154104. DOI: 10.1063/1.3382344

If BJ-damping is used in DFT-D3:
[3] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem, 32 (2011), 1456-1465. DOI: 10.1002/jcc.21759

Comments
  • [WIP] Cell-related gradient modifications

    [WIP] Cell-related gradient modifications

    I found that the current implementation has several performance issues regarding gradient wrt. cell. This PR modifies that. Since the changes are relatively much, I will put some comments.

    Change summary:

    • Use shift for gradient instead of cell.
    • shift is now length scale instead cell unit.
    • Calculate Voigt notation style stress directly

    Also, this PR contains bugfix related to sked cell.

    bug enhancement 
    opened by So-Takamoto 1
  • Raise Error with single atom inputs.

    Raise Error with single atom inputs.

    When the length of atoms is 1, the routine raises error.

    from ase.build import molecule
    from ase.calculators.dftd3 import DFTD3
    from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
    
    if __name__ == "__main__":
        atoms = molecule("H")
        # device="cuda:0" for fast GPU computation.
        calc = TorchDFTD3Calculator(atoms=atoms, device="cpu", damping="bj")
    
        energy = atoms.get_potential_energy()
        forces = atoms.get_forces()
    
        print(f"energy {energy} eV")
        print(f"forces {forces}")
    
    
    Traceback (most recent call last):
      File "quick.py", line 12, in <module>
        energy = atoms.get_potential_energy()
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/atoms.py", line 731, in get_potential_energy
        energy = self._calc.get_potential_energy(self)
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/calculators/calculator.py", line 709, in get_potential_energy
        energy = self.get_property('energy', atoms)
      File "/home/ahayashi/torch-dftd/torch_dftd/torch_dftd3_calculator.py", line 141, in get_property
        dftd3_result = Calculator.get_property(self, name, atoms, allow_calculation)
      File "/home/ahayashi/envs/dftd/lib/python3.8/site-packages/ase/calculators/calculator.py", line 737, in get_property
        self.calculate(atoms, [name], system_changes)
      File "/home/ahayashi/torch-dftd/torch_dftd/torch_dftd3_calculator.py", line 119, in calculate
        results = self.dftd_module.calc_energy(**input_dicts, damping=self.damping)[0]
      File "/home/ahayashi/torch-dftd/torch_dftd/nn/base_dftd_module.py", line 75, in calc_energy
        E_disp = self.calc_energy_batch(
      File "/home/ahayashi/torch-dftd/torch_dftd/nn/dftd3_module.py", line 86, in calc_energy_batch
        E_disp = d3_autoev * edisp(
      File "/home/ahayashi/torch-dftd/torch_dftd/functions/dftd3.py", line 189, in edisp
        c6 = _getc6(Zi, Zj, nci, ncj, c6ab=c6ab, k3=k3)  # c6 coefficients
      File "/home/ahayashi/torch-dftd/torch_dftd/functions/dftd3.py", line 97, in _getc6
        k3_rnc = torch.where(cn0 > 0.0, k3 * r, -1.0e20 * torch.ones_like(r)).view(n_edges, -1)
    RuntimeError: cannot reshape tensor of 0 elements into shape [0, -1] because the unspecified dimension size -1 can be any value and is ambiguous
    
    opened by AkihideHayashi 1
  • use shift for gradient calculation instead of cell

    use shift for gradient calculation instead of cell

    I found that the current implementation has several performance issues regarding gradient wrt. cell. This PR modifies it. Since the changes are relatively much, I will put some comments.

    Change summary:

    • Use shift for gradient instead of cell.
    • shift is now length scale instead cell unit.
    • Calculate Voigt notation style stress directly

    Also, this PR contains bugfix related to sked cell.

    bug enhancement 
    opened by So-Takamoto 0
  • Bugfix: batch calculation with abc=True

    Bugfix: batch calculation with abc=True

    I found that test function test_calc_energy_force_stress_device_batch_abc unintentionally ignores abc argument.

    This PR modified related implementation to work it.

    In addition, corner case correspondence when the total number of atom is zero is also added. (n_graphs cannot be calculated from batch_edge when len(batch_edge) == 0.)

    bug 
    opened by So-Takamoto 0
  • Fixed a bug for inputs with 0 adjacencies.

    Fixed a bug for inputs with 0 adjacencies.

    The _gettc6 routine now works correctly even when the number of adjacencies is 0. Instead of calling calc_neighbor_by_pymatgen when the number of atoms is 0 and the periodic boundary condition, it now return edge_index, S for adjacency 0. In my environment, using the result of torch.sum for the size of torch.zeros caused an error, so I changed it to cast the result of sum to int.

    bug 
    opened by AkihideHayashi 0
  •  Bug in test for stress

    Bug in test for stress

    In test_torch_dftd3_calculator.py/_assert_energy_force_stress_equal, there is a code below.

        if np.all(atoms.pbc == np.array([True, True, True])):
            s1 = atoms.get_stress()
            s2 = atoms.get_stress()
            assert np.allclose(s1, s2, atol=1e-5, rtol=1e-5)
    

    This code cannot compare the results of stresses of calc1 and calc2. Both s1 and s2 are the stress of calc2.

    opened by AkihideHayashi 0
Releases(v0.3.0)
  • v0.3.0(Apr 25, 2022)

    This is the release note of v0.3.0.

    Highlights

    • use shift for gradient calculation instead of cell #13 (Thank you @So-Takamoto )
      • It includes 1. speed up of stress calculation for batch atoms, and 2. bug fix for stress calculation when cell is skewed.
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Sep 4, 2021)

    This is the release note of v0.2.0.

    Highlights

    • Add PFP citation in README.md #2
    • Use pymatgen for pbc neighbor search speed up #3

    Bug fixes

    • Fixed a bug for inputs with 0 adjacencies. #6 (Thank you @AkihideHayashi )
    • Remove RuntimeError on no-cupy environment #8 (Thank you @So-Takamoto )
    • Bugfix: batch calculation with abc=True #9 (Thank you @So-Takamoto )

    Others

    • move pysen to develop dependency #10 (Thank you @So-Takamoto )
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 10, 2021)

Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022