QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Overview

logo

GitHub last commit

Introduction

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented. QRec has a lightweight architecture and provides user-friendly interfaces. It can facilitate model implementation and evaluation.
Founder and principal contributor: @Coder-Yu
Other contributors: @DouTong @Niki666 @HuXiLiFeng @BigPowerZ @flyxu
Supported by: @AIhongzhi (A/Prof. Hongzhi Yin, UQ), @mingaoo (A/Prof. Min Gao, CQU)

What's New

12/10/2021 - BUIR proposed in SIGIR'21 paper has been added.
30/07/2021 - We have transplanted QRec from py2 to py3.
07/06/2021 - SEPT proposed in our KDD'21 paper has been added.
16/05/2021 - SGL proposed in SIGIR'21 paper has been added.
16/01/2021 - MHCN proposed in our WWW'21 paper has been added.
22/09/2020 - DiffNet proposed in SIGIR'19 has been added.
19/09/2020 - DHCF proposed in KDD'20 has been added.
29/07/2020 - ESRF proposed in my TKDE paper has been added.
23/07/2020 - LightGCN proposed in SIGIR'20 has been added.
17/09/2019 - NGCF proposed in SIGIR'19 has been added.
13/08/2019 - RSGAN proposed in ICDM'19 has been added.
09/08/2019 - Our paper is accepted as full research paper by ICDM'19.
20/02/2019 - IRGAN proposed in SIGIR'17 has been added.
12/02/2019 - CFGAN proposed in CIKM'18 has been added.

Architecture

QRec Architecture

Workflow

QRec Architecture

Features

  • Cross-platform: QRec can be easily deployed and executed in any platforms, including MS Windows, Linux and Mac OS.
  • Fast execution: QRec is based on Numpy, Tensorflow and some lightweight structures, which make it run fast.
  • Easy configuration: QRec configs recommenders with a configuration file and provides multiple evaluation protocols.
  • Easy expansion: QRec provides a set of well-designed recommendation interfaces by which new algorithms can be easily implemented.

Requirements

  • gensim==4.1.2
  • joblib==1.1.0
  • mkl==2022.0.0
  • mkl_service==2.4.0
  • networkx==2.6.2
  • numba==0.53.1
  • numpy==1.20.3
  • scipy==1.6.2
  • tensorflow==1.14.0

Usage

There are two ways to run the recommendation models in QRec:

  • 1.Configure the xx.conf file in the directory named config. (xx is the name of the model you want to run)
  • 2.Run main.py.

Or

  • Follow the codes in snippet.py.

For more details, we refer you to the handbook of QRec.

Configuration

Essential Options

Entry Example Description
ratings D:/MovieLens/100K.txt Set the file path of the dataset. Format: each row separated by empty, tab or comma symbol.
social D:/MovieLens/trusts.txt Set the file path of the social dataset. Format: each row separated by empty, tab or comma symbol.
ratings.setup -columns 0 1 2 -columns: (user, item, rating) columns of rating data are used.
social.setup -columns 0 1 2 -columns: (trustor, trustee, weight) columns of social data are used.
mode.name UserKNN/ItemKNN/SlopeOne/etc. name of the recommendation model.
evaluation.setup -testSet ../dataset/testset.txt Main option: -testSet, -ap, -cv (choose one of them)
-testSet path/to/test/file (need to specify the test set manually)
-ap ratio (ap means that the ratings are automatically partitioned into training set and test set, the number is the ratio of the test set. e.g. -ap 0.2)
-cv k (-cv means cross validation, k is the number of the fold. e.g. -cv 5)
-predict path/to/user list/file (predict for a given list of users without evaluation; need to mannually specify the user list file (each line presents a user))
Secondary option:-b, -p, -cold, -tf, -val (multiple choices)
-val ratio (model test would be conducted on the validation set which is generated by randomly sampling the training dataset with the given ratio.)
-b thres (binarizing the rating values. Ratings equal or greater than thres will be changed into 1, and ratings lower than thres will be left out. e.g. -b 3.0)
-p (if this option is added, the cross validation wll be executed parallelly, otherwise executed one by one)
-tf (model training will be conducted on TensorFlow (only applicable and needed for shallow models))
-cold thres (evaluation on cold-start users; users in the training set with rated items more than thres will be removed from the test set)
item.ranking off -topN -1 Main option: whether to do item ranking
-topN N1,N2,N3...: the length of the recommendation list. *QRec can generate multiple evaluation results for different N at the same time
output.setup on -dir ./Results/ Main option: whether to output recommendation results
-dir path: the directory path of output results.

Memory-based Options

similarity pcc/cos Set the similarity method to use. Options: PCC, COS;
num.neighbors 30 Set the number of neighbors used for KNN-based algorithms such as UserKNN, ItemKNN.

Model-based Options

num.factors 5/10/20/number Set the number of latent factors
num.max.epoch 100/200/number Set the maximum number of epoch for iterative recommendation algorithms.
learnRate -init 0.01 -max 1 -init initial learning rate for iterative recommendation algorithms;
-max: maximum learning rate (default 1);
reg.lambda -u 0.05 -i 0.05 -b 0.1 -s 0.1 -u: user regularizaiton; -i: item regularization; -b: bias regularizaiton; -s: social regularization

Implement Your Model

  • 1.Make your new algorithm generalize the proper base class.
  • 2.Reimplement some of the following functions as needed.
          - readConfiguration()
          - printAlgorConfig()
          - initModel()
          - trainModel()
          - saveModel()
          - loadModel()
          - predictForRanking()
          - predict()

For more details, we refer you to the handbook of QRec.

Implemented Algorithms

       
Rating prediction Paper
SlopeOne Lemire and Maclachlan, Slope One Predictors for Online Rating-Based Collaborative Filtering, SDM'05.
PMF Salakhutdinov and Mnih, Probabilistic Matrix Factorization, NIPS'08.
SoRec Ma et al., SoRec: Social Recommendation Using Probabilistic Matrix Factorization, SIGIR'08.
SVD++ Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, SIGKDD'08.
RSTE Ma et al., Learning to Recommend with Social Trust Ensemble, SIGIR'09.
SVD Y. Koren, Collaborative Filtering with Temporal Dynamics, SIGKDD'09.
SocialMF Jamali and Ester, A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks, RecSys'10.
EE Khoshneshin et al., Collaborative Filtering via Euclidean Embedding, RecSys'10.
SoReg Ma et al., Recommender systems with social regularization, WSDM'11.
LOCABAL Tang, Jiliang, et al. Exploiting local and global social context for recommendation, AAAI'13.
SREE Li et al., Social Recommendation Using Euclidean embedding, IJCNN'17.
CUNE-MF Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17.

                       
Item Ranking Paper
BPR Rendle et al., BPR: Bayesian Personalized Ranking from Implicit Feedback, UAI'09.
WRMF Yifan Hu et al.Collaborative Filtering for Implicit Feedback Datasets, KDD'09.
SBPR Zhao et al., Leveraing Social Connections to Improve Personalized Ranking for Collaborative Filtering, CIKM'14
ExpoMF Liang et al., Modeling User Exposure in Recommendation, WWW''16.
CoFactor Liang et al., Factorization Meets the Item Embedding: Regularizing Matrix Factorization with Item Co-occurrence, RecSys'16.
TBPR Wang et al. Social Recommendation with Strong and Weak Ties, CIKM'16'.
CDAE Wu et al., Collaborative Denoising Auto-Encoders for Top-N Recommender Systems, WSDM'16'.
DMF Xue et al., Deep Matrix Factorization Models for Recommender Systems, IJCAI'17'.
NeuMF He et al. Neural Collaborative Filtering, WWW'17.
CUNE-BPR Zhang et al., Collaborative User Network Embedding for Social Recommender Systems, SDM'17'.
IRGAN Wang et al., IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models, SIGIR'17'.
SERec Wang et al., Collaborative Filtering with Social Exposure: A Modular Approach to Social Recommendation, AAAI'18'.
APR He et al., Adversarial Personalized Ranking for Recommendation, SIGIR'18'.
IF-BPR Yu et al. Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation, CIKM'18'.
CFGAN Chae et al. CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks, CIKM'18.
NGCF Wang et al. Neural Graph Collaborative Filtering, SIGIR'19'.
DiffNet Wu et al. A Neural Influence Diffusion Model for Social Recommendation, SIGIR'19'.
RSGAN Yu et al. Generating Reliable Friends via Adversarial Learning to Improve Social Recommendation, ICDM'19'.
LightGCN He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, SIGIR'20.
DHCF Ji et al. Dual Channel Hypergraph Collaborative Filtering, KDD'20.
ESRF Yu et al. Enhancing Social Recommendation with Adversarial Graph Convlutional Networks, TKDE'20.
MHCN Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.
SGL Wu et al. Self-supervised Graph Learning for Recommendation, SIGIR'21.
SEPT Yu et al. Socially-Aware Self-supervised Tri-Training for Recommendation, KDD'21.
BUIR Lee et al. Bootstrapping User and Item Representations for One-Class Collaborative Filtering, SIGIR'21.

Related Datasets

   
Data Set Basic Meta User Context
Users Items Ratings (Scale) Density Users Links (Type)
Ciao [1] 7,375 105,114 284,086 [1, 5] 0.0365% 7,375 111,781 Trust
Epinions [2] 40,163 139,738 664,824 [1, 5] 0.0118% 49,289 487,183 Trust
Douban [3] 2,848 39,586 894,887 [1, 5] 0.794% 2,848 35,770 Trust
LastFM [4] 1,892 17,632 92,834 implicit 0.27% 1,892 25,434 Trust
Yelp [5] 19,539 21,266 450,884 implicit 0.11% 19,539 864,157 Trust
Amazon-Book [6] 52,463 91,599 2,984,108 implicit 0.11% - - -

Reference

[1]. Tang, J., Gao, H., Liu, H.: mtrust:discerning multi-faceted trust in a connected world. In: International Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, Wa, Usa, February. pp. 93–102 (2012)

[2]. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM conference on Recommender systems. pp. 17–24. ACM (2007)

[3]. G. Zhao, X. Qian, and X. Xie, “User-service rating prediction by exploring social users’ rating behaviors,” IEEE Transactions on Multimedia, vol. 18, no. 3, pp. 496–506, 2016.

[4]. Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on Information Heterogeneity and Fusion in Recom- mender Systems (HetRec 2011). In Proceedings of the 5th ACM conference on Recommender systems (RecSys 2011). ACM, New York, NY, USA

[5]. Yu et al. Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation, WWW'21.

[6]. He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, SIGIR'20.

Acknowledgment

This project is supported by the Responsible Big Data Intelligence Lab (RBDI) at the school of ITEE, University of Queensland, and Chongqing University.

If our project is helpful to you, please cite one of these papers.
@inproceedings{yu2018adaptive,
title={Adaptive implicit friends identification over heterogeneous network for social recommendation},
author={Yu, Junliang and Gao, Min and Li, Jundong and Yin, Hongzhi and Liu, Huan},
booktitle={Proceedings of the 27th ACM International Conference on Information and Knowledge Management},
pages={357--366},
year={2018},
organization={ACM}
}

@inproceedings{yu2021self,
title={Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation},
author={Yu, Junliang and Yin, Hongzhi and Li, Jundong and Wang, Qinyong and Hung, Nguyen Quoc Viet and Zhang, Xiangliang},
booktitle={Proceedings of the Web Conference 2021},
pages={413--424},
year={2021}
}

Owner
Yu
Long live idealism!
Yu
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022