On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

Overview

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing Valentin Khrulkov, Leyla Mirvakhabova, Ivan Oseledets, Artem Babenko

Overview

We replace linear shifts commonly used for image editing with a flow of a trainable Neural ODE in the latent space.

w' = NN(w; \theta)

The RHS of this Neural ODE is trained end-to-end using pre-trained attribute regressors by enforcing

  • change of the desired attribute;
  • invariance of remaining attributes.

Installation and usage

Data

Data required to use the code is available at this dropbox link (2.5Gb).

Path Description
data data hosted on Dropbox
  ├  models pretrained GAN models and attribute regressors
  ├  log pretrained nonlinear edits (Neural ODEs of depth 1) for a variety of attributes on CUB, FFHQ, Places2
  ├  data_to_rectify 100,000 precomputed pairs (w, R[G[w]]); i.e., style vectors and corresponding semantic attributes
  ├  configs parameters of StyleGAN 2 generators for each dataset (n_mlp, channel_width, etc)
    └  inverses precomputed inverses (elements of W-plus) for sample FFHQ images

To download and unpack the data run get_data.sh.

Training

We used torch 1.7 for training; however, the code should work for lower versions as well. An example training script to rectify all the attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--depth 1

For selected attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--dir 4 8 15 16 23 32 \
--depth 1

Custom dataset

For training on a custom dataset, you have to provide

  • Generator and attribute regressor weights
  • a dictionary {dataset}_all.pt (stored in data_to_rectify). It has the form {"ws": ws, "labels" : labels} with ws being a torch.Tensor of size N x 512 and labels is a torch.Tensor of size N x D, with D being the number of semantic factors. labels should be constructed by evaluating the corresponding attribute regressor on synthetic images generator(ws[i]). It is used to sample batches for training.

Visualization

Please see explore.ipynb for example visualizations. lib.utils.py contains a utility wrapper useful for building and loading the Neural ODE models (FlowFactory).

Restoring from checkpoint

= 1 corresponds to an MLP with depth layers odeblock.load_state_dict(...) # some style vector (generator.style(z)) w0 = ... # You can directly call odeint with torch.no_grad(): odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device)) # Or utilize the wrapper flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald") flow.flow(w=w0, t=1) # To flow real images: w = torch.load("inverses/actors.pt").to(device) flow.flow(w, t=6, truncate_real=6) # truncate_real specifies which portion of a W-plus vector to modify # (e.g., first 6 our of 14 vectors) ">
import torch
from lib.utils import FlowFactory, LatentFlow
from torchdiffeq import odeint_adjoint as odeint
device = torch.device("cuda")
flow_factory = FlowFactory(dataset="ffhq", device=device)
odeblock = flow_factory._build_odeblock(depth=1)
# depth = -1 corresponds to a constant right hand side (w' = c)
# depth >= 1 corresponds to an MLP with depth layers
odeblock.load_state_dict(...)

# some style vector (generator.style(z))
w0 = ...

# You can directly call odeint
with torch.no_grad():
    odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device))

# Or utilize the wrapper 
flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald")
flow.flow(w=w0, t=1)

# To flow real images:
w = torch.load("inverses/actors.pt").to(device)
flow.flow(w, t=6, truncate_real=6)
# truncate_real specifies which portion of a W-plus vector to modify
# (e.g., first 6 our of 14 vectors)

A sample script to generate a movie is

CUDA_VISIBLE_DEVICES=0 python make_movie.py --attribute Bald --dataset ffhq

Examples

FFHQ

Bald Goatee Wavy_Hair Arched_Eyebrows
Bangs Young Blond_Hair Chubby

Places2

lush rugged fog

Citation

Coming soon.

Credits

Owner
Valentin Khrulkov
PhD student
Valentin Khrulkov
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023