Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Overview

Learning to Adapt Structured Output Space for Semantic Segmentation

Pytorch implementation of our method for adapting semantic segmentation from the synthetic dataset (source domain) to the real dataset (target domain). Based on this implementation, our result is ranked 3rd in the VisDA Challenge.

Contact: Yi-Hsuan Tsai (wasidennis at gmail dot com) and Wei-Chih Hung (whung8 at ucmerced dot edu)

Paper

Learning to Adapt Structured Output Space for Semantic Segmentation
Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (spotlight) (* indicates equal contribution).

Please cite our paper if you find it useful for your research.

@inproceedings{Tsai_adaptseg_2018,
  author = {Y.-H. Tsai and W.-C. Hung and S. Schulter and K. Sohn and M.-H. Yang and M. Chandraker},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {Learning to Adapt Structured Output Space for Semantic Segmentation},
  year = {2018}
}

Example Results

Quantitative Reuslts

Installation

  • Install PyTorch from http://pytorch.org with Python 2 and CUDA 8.0

  • NEW Add the LS-GAN objective to improve the performance

    • Usage: add --gan LS option during training (see below for more details)
  • PyTorch 0.4 with Python 3 and CUDA 8.0

    • Usage: replace the training and evaluation codes with the ones in the pytorch_0.4 folder
    • Update: tensorboard is provided by adding --tensorboard in the command
    • Note: the single-level model works as expected, while the multi-level model requires smaller weights, e.g., --lambda-adv-target1 0.00005 --lambda-adv-target2 0.0005. We will investigate this issue soon.
  • Clone this repo

git clone https://github.com/wasidennis/AdaptSegNet
cd AdaptSegNet

Dataset

  • Download the GTA5 Dataset as the source domain, and put it in the data/GTA5 folder

  • Download the Cityscapes Dataset as the target domain, and put it in the data/Cityscapes folder

Pre-trained Models

  • Please find our-pretrained models using ResNet-101 on three benchmark settings here

  • They include baselines (without adaptation and with feature adaptation) and our models (single-level and multi-level)

Testing

  • NEW Update results using LS-GAN and using Synscapes as the source domain

  • Download the pre-trained multi-level GTA5-to-Cityscapes model and put it in the model folder

  • Test the model and results will be saved in the result folder

python evaluate_cityscapes.py --restore-from ./model/GTA2Cityscapes_multi-ed35151c.pth
python evaluate_cityscapes.py --model DeeplabVGG --restore-from ./model/GTA2Cityscapes_vgg-ac4ac9f6.pth
python compute_iou.py ./data/Cityscapes/data/gtFine/val result/cityscapes

Training Examples

  • NEW Train the GTA5-to-Cityscapes model (single-level with LS-GAN)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single_lsgan \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.01 \
                                     --gan LS
  • Train the GTA5-to-Cityscapes model (multi-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_multi \
                                     --lambda-seg 0.1 \
                                     --lambda-adv-target1 0.0002 --lambda-adv-target2 0.001
  • Train the GTA5-to-Cityscapes model (single-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.001

Related Implementation and Dataset

  • Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker. Domain Adaptation for Structured Output via Discriminative Patch Representations. In ICCV, 2019. (Oral) [paper] [project] [Implementation Guidance]
  • W.-C. Hung, Y.-H Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang. Adversarial Learning for Semi-supervised Semantic Segmentation. In BMVC, 2018. [paper] [code]
  • Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun. No More Discrimination: Cross City Adaptation of Road Scene Segmenters. In ICCV 2017. [paper] [project]

Acknowledgment

This code is heavily borrowed from Pytorch-Deeplab.

Note

The model and code are available for non-commercial research purposes only.

  • 10/2019: update performance and training/evaluation codes for using LS-GAN and Synscapes (especially thanks to Yan-Ting Liu for helping experiments)
  • 01/2019: upate the training code for PyTorch 0.4
  • 07/23/2018: update evaluation code for PyTorch 0.4
  • 06/04/2018: update pretrained VGG-16 model
  • 02/2018: code released
Owner
Yi-Hsuan Tsai
Yi-Hsuan Tsai
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023