Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Overview

Learning to Adapt Structured Output Space for Semantic Segmentation

Pytorch implementation of our method for adapting semantic segmentation from the synthetic dataset (source domain) to the real dataset (target domain). Based on this implementation, our result is ranked 3rd in the VisDA Challenge.

Contact: Yi-Hsuan Tsai (wasidennis at gmail dot com) and Wei-Chih Hung (whung8 at ucmerced dot edu)

Paper

Learning to Adapt Structured Output Space for Semantic Segmentation
Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (spotlight) (* indicates equal contribution).

Please cite our paper if you find it useful for your research.

@inproceedings{Tsai_adaptseg_2018,
  author = {Y.-H. Tsai and W.-C. Hung and S. Schulter and K. Sohn and M.-H. Yang and M. Chandraker},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {Learning to Adapt Structured Output Space for Semantic Segmentation},
  year = {2018}
}

Example Results

Quantitative Reuslts

Installation

  • Install PyTorch from http://pytorch.org with Python 2 and CUDA 8.0

  • NEW Add the LS-GAN objective to improve the performance

    • Usage: add --gan LS option during training (see below for more details)
  • PyTorch 0.4 with Python 3 and CUDA 8.0

    • Usage: replace the training and evaluation codes with the ones in the pytorch_0.4 folder
    • Update: tensorboard is provided by adding --tensorboard in the command
    • Note: the single-level model works as expected, while the multi-level model requires smaller weights, e.g., --lambda-adv-target1 0.00005 --lambda-adv-target2 0.0005. We will investigate this issue soon.
  • Clone this repo

git clone https://github.com/wasidennis/AdaptSegNet
cd AdaptSegNet

Dataset

  • Download the GTA5 Dataset as the source domain, and put it in the data/GTA5 folder

  • Download the Cityscapes Dataset as the target domain, and put it in the data/Cityscapes folder

Pre-trained Models

  • Please find our-pretrained models using ResNet-101 on three benchmark settings here

  • They include baselines (without adaptation and with feature adaptation) and our models (single-level and multi-level)

Testing

  • NEW Update results using LS-GAN and using Synscapes as the source domain

  • Download the pre-trained multi-level GTA5-to-Cityscapes model and put it in the model folder

  • Test the model and results will be saved in the result folder

python evaluate_cityscapes.py --restore-from ./model/GTA2Cityscapes_multi-ed35151c.pth
python evaluate_cityscapes.py --model DeeplabVGG --restore-from ./model/GTA2Cityscapes_vgg-ac4ac9f6.pth
python compute_iou.py ./data/Cityscapes/data/gtFine/val result/cityscapes

Training Examples

  • NEW Train the GTA5-to-Cityscapes model (single-level with LS-GAN)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single_lsgan \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.01 \
                                     --gan LS
  • Train the GTA5-to-Cityscapes model (multi-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_multi \
                                     --lambda-seg 0.1 \
                                     --lambda-adv-target1 0.0002 --lambda-adv-target2 0.001
  • Train the GTA5-to-Cityscapes model (single-level)
python train_gta2cityscapes_multi.py --snapshot-dir ./snapshots/GTA2Cityscapes_single \
                                     --lambda-seg 0.0 \
                                     --lambda-adv-target1 0.0 --lambda-adv-target2 0.001

Related Implementation and Dataset

  • Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker. Domain Adaptation for Structured Output via Discriminative Patch Representations. In ICCV, 2019. (Oral) [paper] [project] [Implementation Guidance]
  • W.-C. Hung, Y.-H Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang. Adversarial Learning for Semi-supervised Semantic Segmentation. In BMVC, 2018. [paper] [code]
  • Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun. No More Discrimination: Cross City Adaptation of Road Scene Segmenters. In ICCV 2017. [paper] [project]

Acknowledgment

This code is heavily borrowed from Pytorch-Deeplab.

Note

The model and code are available for non-commercial research purposes only.

  • 10/2019: update performance and training/evaluation codes for using LS-GAN and Synscapes (especially thanks to Yan-Ting Liu for helping experiments)
  • 01/2019: upate the training code for PyTorch 0.4
  • 07/23/2018: update evaluation code for PyTorch 0.4
  • 06/04/2018: update pretrained VGG-16 model
  • 02/2018: code released
Owner
Yi-Hsuan Tsai
Yi-Hsuan Tsai
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022