Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Overview

Segmentation from Natural Language Expressions

This repository contains the Caffe reimplementation of the following paper:

  • R. Hu, M. Rohrbach, T. Darrell, Segmentation from Natural Language Expressions. in arXiv:1603.06180, 2016. (PDF)
@article{hu2016segmentation,
  title={Segmentation from Natural Language Expressions},
  author={Hu, Ronghang and Rohrbach, Marcus and Darrell, Trevor},
  journal={arXiv preprint arXiv:1603.06180},
  year={2016}
}

Project Page: http://ronghanghu.com/text_objseg

Installation

  1. Install Caffe following the instructions here.
  2. Download this repository or clone with Git, and then cd into the root directory of the repository.

Training and evaluation on ReferIt Dataset

Download dataset and VGG network

Download ReferIt dataset:

./referit/referit-dataset/download_referit_dataset.sh

Download the caffemodel for VGG-16 network parameters trained on ImageNET 1000 classes.

Training

You may need to add the repository root directory to Python's module path:

export PYTHONPATH=/path/to/text_objseg_caffe/:$PYTHONPATH

Build training batches for bounding boxes:

python referit/build_training_batches_det.py

Build training batches for segmentation:

python referit/build_training_batches_seg.py

Configure the config.py file in the directory det_model and train the language-based bounding box localization model:

python det_model/train_det_model.py

Configure the config.py file in the directory seg_low_res_model and train the low resolution language-based segmentation model (from the previous bounding box localization model):

python seg_low_res_model/train_low_res_model.py

Configure the config.py file in the directory seg_model and train the high resolution language-based segmentation model (from the previous low resolution segmentation model):

python seg_model/train_seg_model.py

Evaluation

You may need to add the repository root directory to Python's module path:

export PYTHONPATH=path/to/text_objseg_caffe:$PYTHONPATH

Configure the test_config.py file in the directory seg_model and run evaluation for the high resolution language-based segmentation model:

python seg_model/test_seg_model.py

This should reproduce the results in the paper. You may also evaluate the language-based bounding box localization model:

python det_model/test_det_model.py

The results can be compared to this paper.

Demo

There is a demo that you can try! Run the demo in ./demo/text_objseg_demo.ipynb with Jupyter Notebook (IPython Notebook).

Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
πŸ”₯ Cannlytics-powered artificial intelligence πŸ€–

Cannlytics AI πŸ”₯ Cannlytics-powered artificial intelligence πŸ€– πŸ—οΈ Installation πŸƒβ€β™€οΈ Quickstart 🧱 Development 🦾 Automation πŸ’Έ Support πŸ›οΈ License ?

Cannlytics 3 Nov 11, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright Β© German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022