The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Overview

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compliance with the code license: License


Body Part Regression

The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form. Each axial slice maps to a slice score. The slice scores monotonously increase with patient height. In the following figure, you can find example slices for the predicted slice scores: 0, 25, 50, 75, and 100. In each row independent random CT slices are visible with nearly the same target. It can be seen, that the start of the pelvis maps to 0, the upper pelvis region maps to 25, the start of the lungs to 50, the shoulder region to 75, and the head to 100:

decision tree

With the help of a slice-score look-up table, the mapping between certain landmarks to slice scores can be checked. The BPR model learns in a completely self-supervised fashion. There is no need for annotated data for training the model, besides of evaluation purposes.

The BPR model can be used for sorting and labeling radiologic images by body parts. Moreover, it is useful for cropping specific body parts as a pre-processing or post-processing step of medical algorithms. If a body part is invalid for a certain medical algorithm, it can be cropped out before applying the algorithm to the volume.

The Body Part Regression model in this repository is based on the SSBR model from Yan et al. with a few modifications explained in the master thesis "Body Part Regression for CT Volumes".

For CT volumes, a pretrained model for inference exists already. With a simple command from the terminal, the body part information can be calculated for nifti-files.


1. Install package

You can either use conda or just pip to install the bpreg package.

1.1 Install package without conda

  1. Create a new python environment and activate it through:
python -m venv venv_name
source venv_name/bin/activate
  1. Install the package through:
pip install bpreg

1.2 Install package with conda

  1. Create new conda environment and activate environment with:
conda create -n venv_name
conda activate venv_name
  1. Install pip into the environment
conda install pip
  1. Install the package with pip through the command (with your personal anaconda path):
/home/anaconda3/envs/venv_name/bin/pip install bpreg

You can find your personal anaconda path through the command:

which anaconda

Analyze examined body parts

The scope of the pretrained BPR model for CT volumes are body parts from adults from the beginning of the pelvis to the end of the head. Note that due to missing training data, children, pregnant women or legs are not in the scope of the algorithm. To obtain the body part information for nifti-files you need to provide the nifti-files with the file ending *.nii or *.nii.gz in one directory and run the following command:

bpreg_predict -i 
   
     -o 
    

    
   

Tags for the bpreg_predict command:

  • -i (str): input path, origin of nifti-files
  • -o (str): save path for created meta-data json-files
  • --skip (bool): skip already created .json metadata files (default: 1)
  • --model (str): specify model (default: public model from zenodo for CT volumes)
  • --plot (png): create and save plot for each volume with calculated slice score curve.

Through the bpreg_predict command for each nifti-file in the directory input_path a corresponding json-file gets created and saved in the output_path. Moreover, a README file will be saved in the output path, where the information inside the JSON files is explained.

If your input data is not in the nifti-format you can still apply the BPR model by converting the data to a numpy matrix. A tutorial for using the package for CT images in the numpy format can be found in the notebook: docs/notebooks/inference-example-with-npy-arrays.

If you use this model for your work, please make sure to cite the model and the training data as explained at zenodo.

The meta-data files can be used for three main use cases.

  1. Predicting the examined body part
  2. Filter corrupted CT images
  3. Cropping required region from CT images

1. Predicting the examined body part

The label for the predicted examined body part can be found under body part examined tag in the meta-data file. In the following figure, you can find a comparison between the BodyPartExamined tag from the DICOM meta-data header and the predicted body part examined tag from this method. The predicted body part examined tag is more fine-grained and contains less misleading and missing values than the BodyPartExamined tag from the DICOM header:

Pie charts of comparisson between DICOM BodyPartExamined tag and predicted body part examined tag

2. Filter corrupted CT images

Some of the predicted body part examined tags are NONE, which means that the predicted slice score curve for this CT volume looks unexpected (then thevalid z-spacing tag from the meta-data is equal to 0). Based on the NONE tag corrupted CT volumes can be automatically found. In the following, you find in the left a typical CT volume with a corresponding typical slice score curve. Next to the typical CT volume several corrupted CT volumes are shown with the corresponding slice score curves. It can be seen that the slice score curves from the corrupted CT volumes are clearly different from the expected slice score curve. If the slice score curve is looking is monotonously increasing as in the left figure but the predicted body part examined tag is still NONE then this happens because the z-spacing of the CT volume seems to be wrong.

Example figures of slice score curves from corrupted CT images

3. Cropping required region from CT images

The meta-data can be used as well to crop appropriate regions from a CT volume. This can be helpful for medical computer vision algorithms. It can be implemented as a pre-processing or post-processing step and leads to less false-positive predictions in regions which the model has not seen during training: Figure of known region cropping process as pre-processing step or post-processing step for a lung segmentation method


Structure of metadata file

The json-file contains all the metadata regarding the examined body part of the nifti-file. It includes the following tags:

  • cleaned slice-scores: Cleanup of the outcome from the BPR model (smoothing, filtering out outliers).
  • unprocessed slice-scores: Plain outcome of the BPR model.
  • body part examined: Dictionary with the tags: "legs", "pelvis", "abdomen", "chest", "shoulder-neck" and "head". For each body-part, the slice indices are listed, where the body part is visible.
  • body part examined tag: updated tag for BodyPartExamined. Possible values: PELVIS, ABDOMEN, CHEST, NECK, HEAD, HEAD-NECK-CHEST-ABDOMEN-PELVIS, HEAD-NECK-CHEST-ABDOMEN, ...
  • look-up table: reference table to be able to map slice scores to landmarks and vise versa.
  • reverse z-ordering: (0/1) equal to one if patient height decreases with slice index.
  • valid z-spacing: (0/1) equal to one if z-spacing seems to be plausible. The data sanity check is based on the slope of the curve from the cleaned slice-scores.

The information from the meta-data file can be traced back to the unprocessed slice-scores and the look-up table.


Documentation for Body Part Regression

In the docs/notebooks folder, you can find a tutorial on how to use the body part regression model for inference. An example will be presented, were the lungs are detected and cropped automatically from CT volumes. Moreover, a tutorial for training and evaluating a Body Part Regression model can be found.

For a more detailed explanation to the theory behind Body Part Regression and the application use cases have a look into the master thesis "Body Part Regression for CT Images" from Sarah Schuhegger.


Cite Software

Sarah Schuhegger. (2021). MIC-DKFZ/BodyPartRegression: (v1.0). Zenodo. https://doi.org/10.5281/zenodo.5195341

Owner
MIC-DKFZ
Division of Medical Image Computing, German Cancer Research Center (DKFZ)
MIC-DKFZ
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Özlem Taşkın 0 Feb 23, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023