Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Related tags

Deep LearningIFC
Overview

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Paper

Video Instance Segmentation using Inter-Frame Communication Transformers

Note

Steps

  1. Installation.

Install YouTube-VIS API following the link.
Install the repository by the following command. Follow Detectron2 for details.

git clone https://github.com/sukjunhwang/IFC.git
cd IFC
pip install -e .
  1. Link datasets

COCO

mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017

YTVIS 2019

mkdir -p datasets/ytvis_2019
ln -s /path_to_ytvis2019_dataset datasets/ytvis_2019

We expect ytvis_2019 folder to be like

└── ytvis_2019
    ├── train
    │   ├── Annotations
    │   ├── JPEGImages
    │   └── meta.json
    ├── valid
    │   ├── Annotations
    │   ├── JPEGImages
    │   └── meta.json
    ├── test
    │   ├── Annotations
    │   ├── JPEGImages
    │   └── meta.json
    ├── train.json
    ├── valid.json
    └── test.json

Training w/ 8 GPUs (if using AdamW and trying to change the batch size, please refer to https://arxiv.org/abs/1711.00489)

  • Our suggestion is to use 8 GPUs.
  • Pretraining on COCO requires >= 16G GPU memory, while finetuning on YTVIS requires less.
python projects/IFC/train_net.py --num-gpus 8 \
    --config-file projects/IFC/configs/base_ytvis.yaml \
    MODEL.WEIGHTS path/to/model.pth

Evaluating on YTVIS 2019.
We support multi-gpu evaluation and $F_NUM denotes the window size.

python projects/IFC/train_net.py --num-gpus 8 --eval-only \
    --config-file projects/IFC/configs/base_ytvis.yaml \
    MODEL.WEIGHTS path/to/model.pth \
    INPUT.SAMPLING_FRAME_NUM $F_NUM

Model Checkpoints (YTVIS 2019)

Due to the small size of YTVIS dataset, the scores may fluctuate even if retrained with the same configuration.

Note: The provided checkpoints are the ones with highest accuracies from multiple training attempts. If you are planning to cite IFC and its scores, we suggest you to refer to the average scores reported in camera-ready version of NeurIPS.

backbone stride FPS AP AP50 AP75 AR1 AR10 download
ResNet-50 T=5
T=36
46.5
107.1
41.6
42.8
63.2
65.8
45.6
46.8
43.6
43.8
53.0
51.2
model | results
ResNet-101 T=36 89.4 44.6 69.2 49.5 44.0 52.1 model | results

License

IFC is released under the Apache 2.0 license.

Citing

If our work is useful in your project, please consider citing us.

@article{hwang2021video,
  title   = {Video Instance Segmentation using Inter-Frame Communication Transformers},
  author  = {Hwang, Sukjun and Heo, Miran and Oh, Seoung Wug and Kim, Seon Joo},
  journal = {arXiv preprint arXiv:2106.03299},
  year    = {2021}
}

Acknowledgement

We highly appreciate all previous works that influenced our project.
Special thanks to facebookresearch for their wonderful codes that have been publicly released (detectron2, DETR).

Owner
Sukjun Hwang
Computer vision via deep learning.
Sukjun Hwang
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022