This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Overview

Nonlinear Risk Bounded Robot Motion Planning

This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car obstacle in a CARLA simulator. The ego_vehicle has to consider all the system and perception uncertainties to generate a risk-bounded motion plan and execute it with coherent risk assessment. Coherent risk assessment for a nonlinear robot like the car in this simulation is made possible using nonlinear model predictive control (NMPC) based steering law combined with Unscented Kalman filter for state estimation purpose. Finally, distributionally robust chance constraints applied using a temporal logic specifications evaluate the risk of a trajectory before being added to the sequence of trajectories forming a motion plan from the start to the destination.

Click the picture to watch the corresponding youtube video supporting our work

Motion Planning Using Carla Simulator

The code in this repository implements the algorithms and ideas from our following paper:

  1. V. Renganathan, S. Safaoui, A. Kothari, I. Shames, T. Summers, Risk Bounded Nonlinear Robot Motion Planning With Integrated Perception & Control, Submitted to the Special Issue on Risk-aware Autonomous Systems: Theory and Practice, Artificial Intelligence Journal, 2021.

Dependencies

  • Python 3.5+ (tested with 3.7.6)
  • Numpy
  • Scipy
  • Matplotlib
  • Casadi
  • Namedlist
  • Pickle
  • Carla

Installing

You will need the following two items to run the codes. After that there is no other formal package installation procedure; simply download this repository and run the Python files.

  • CARLA SIMULATOR VERSION: 0.9.10
  • UNREAL ENGINE VERSION: 4.24.3

Modules of an autonomy stack

There are two main modules for understanding this whole package

  1. First, a high level motion planner has to run and it will generate a reference trajectory for the car from start to the end
  2. Second, a low level tracking controller will enable the car to track the reference trajectory despite the realized noises.

Procedure to run the code

  1. Run the python code Generate_Monte_Carlo_Noises.py which will generate and load the required noise parameters and data required for simulation into pickle files
  2. Run the python code Run_Path_Planner.py
  3. The code will run for specified number of iterations and produces all required data
  4. Then load the cooresponding pickle file data in file main.py in the line number #488.
  5. Run the main.py file with the Carla executable being open already
  6. The simulation will run in the Carla simulator where the car will track the reference trajectory and results are stored in pickle files
  7. To see the tracking results, run the python file Tracked_Path_Plotter.py

Running Monte-Carlo Simulations

  1. Create a new folder called monte_carlo_results in the same directory where the python file monte_carlo_car.py resides.
  2. Update the trial_num at line #1554 in the file monte_carlo_car.py and run it while the Carla executable is open (It will automatically load the noise realizations corresponding to the trial_num from the pickle files)
  3. After the simulation is over, automatically the results are stored under the folder monte_carlo_results with a specific trial name
  4. Repeat the process by changing trial number in step 2 and run again.
  5. Once the all trials are completed, run the python file monte_carlo_results_plotter.py to plot the monte-carlo simulation results

Variations

  • Instead of Distributionally robust chance constraints, if you would like to have a simple Gaussian Chance Constraints, then change self.DRFlag = False in line 852 in the file DR_RRTStar_Planner.py
  • Choose your own state estimator UKF or EKF by commenting and uncommenting the corresponding estimator in lines 26-27 of file State_Estimator.py

Funding Acknowledgement

This work is partially supported by Defence Science and Technology Group, through agreement MyIP: ID10266 entitled Hierarchical Verification of Autonomy Architectures, the Australian Government, via grant AUSMURIB000001 associated with ONR MURI grant N00014-19-1-2571, and by the United States Air Force Office of Scientific Research under award number FA2386-19-1-4073.

Contributing Authors

  1. Venkatraman Renganathan - UT Dallas
  2. Sleiman Safaoui - UT Dallas
  3. Aadi Kothari - UT Dallas
  4. Benjamin Gravell - UT Dallas
  5. Dr. Iman Shames - Australian National University
  6. Dr. Tyler Summers - UT Dallas

Affiliation

TSummersLab - Control, Optimization & Networks Laboratory (CONLab)

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022