Tensorflow implementation of Swin Transformer model.

Overview

Swin Transformer (Tensorflow)

Tensorflow reimplementation of Swin Transformer model.

Based on Official Pytorch implementation. image

Requirements

  • tensorflow >= 2.4.1

Pretrained Swin Transformer Checkpoints

ImageNet-1K and ImageNet-22K Pretrained Checkpoints

name pretrain resolution [email protected] #params model
swin_tiny_224 ImageNet-1K 224x224 81.2 28M github
swin_small_224 ImageNet-1K 224x224 83.2 50M github
swin_base_224 ImageNet-22K 224x224 85.2 88M github
swin_base_384 ImageNet-22K 384x384 86.4 88M github
swin_large_224 ImageNet-22K 224x224 86.3 197M github
swin_large_384 ImageNet-22K 384x384 87.3 197M github

Examples

Initializing the model:

from swintransformer import SwinTransformer

model = SwinTransformer('swin_tiny_224', num_classes=1000, include_top=True, pretrained=False)

You can use a pretrained model like this:

import tensorflow as tf
from swintransformer import SwinTransformer

model = tf.keras.Sequential([
  tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]),
  SwinTransformer('swin_tiny_224', include_top=False, pretrained=True),
  tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
])

If you use a pretrained model with TPU on kaggle, specify use_tpu option:

import tensorflow as tf
from swintransformer import SwinTransformer

model = tf.keras.Sequential([
  tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]),
  SwinTransformer('swin_tiny_224', include_top=False, pretrained=True, use_tpu=True),
  tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
])

Example: TPU training on Kaggle

Citation

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}
Comments
  • no module name 'swintransformer' error

    no module name 'swintransformer' error

    I wounder where the from swintransformer import SwinTransformer come from? I tried to pip install it, it also said that there is no such module. How can I overcome this problem?

    opened by HunarAA 2
  • Pretrained Swin-Transformer for multiple output

    Pretrained Swin-Transformer for multiple output

    Hi rishigami,

    Thank you for the implementation in Tensorflow. I am trying to use the Swin Transformer for a classification problem with multiple outputs. In your guide on how to use a pertained model you put it in a Sequential mode, but in this way I am not able to stack multiple dense layer for the multiple classification, could you help me understand how can I adapt your TF code to my problem, using it in a Functional API way maybe?

    opened by imanuelroz 2
  • NotImplementedError during model save

    NotImplementedError during model save

    I have defined a model as follows:

    def buildModel(LR = LR):
        backbone = SwinTransformer('swin_large_224', num_classes=None, include_top=False, pretrained=True, use_tpu=False)
        
        inp = L.Input(shape=(224,224,3))
        emb = backbone(inp)
        out = L.Dense(1,activation="relu")(emb)
        
        model = tf.keras.Model(inputs=inp,outputs=out)
        optimizer = tf.keras.optimizers.Adam(lr = LR)
        model.compile(loss="mse",optimizer=optimizer,metrics=[tf.keras.metrics.RootMeanSquaredError()])
        return model
    

    Now when I save this model using model.save("./model.hdf5") I get the following error:

    NotImplementedError                       Traceback (most recent call last)
    /tmp/ipykernel_43/131311624.py in <module>
    ----> 1 model.save("model.hdf5")
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in save(self, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
       2000     # pylint: enable=line-too-long
       2001     save.save_model(self, filepath, overwrite, include_optimizer, save_format,
    -> 2002                     signatures, options, save_traces)
       2003 
       2004   def save_weights(self,
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/save.py in save_model(model, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
        152           'or using `save_weights`.')
        153     hdf5_format.save_model_to_hdf5(
    --> 154         model, filepath, overwrite, include_optimizer)
        155   else:
        156     saved_model_save.save(model, filepath, overwrite, include_optimizer,
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/hdf5_format.py in save_model_to_hdf5(model, filepath, overwrite, include_optimizer)
        113 
        114   try:
    --> 115     model_metadata = saving_utils.model_metadata(model, include_optimizer)
        116     for k, v in model_metadata.items():
        117       if isinstance(v, (dict, list, tuple)):
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
        156   except NotImplementedError as e:
        157     if require_config:
    --> 158       raise e
        159 
        160   metadata = dict(
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
        153   model_config = {'class_name': model.__class__.__name__}
        154   try:
    --> 155     model_config['config'] = model.get_config()
        156   except NotImplementedError as e:
        157     if require_config:
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in get_config(self)
        648 
        649   def get_config(self):
    --> 650     return copy.deepcopy(get_network_config(self))
        651 
        652   @classmethod
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in get_network_config(network, serialize_layer_fn)
       1347         filtered_inbound_nodes.append(node_data)
       1348 
    -> 1349     layer_config = serialize_layer_fn(layer)
       1350     layer_config['name'] = layer.name
       1351     layer_config['inbound_nodes'] = filtered_inbound_nodes
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
        248         return serialize_keras_class_and_config(
        249             name, {_LAYER_UNDEFINED_CONFIG_KEY: True})
    --> 250       raise e
        251     serialization_config = {}
        252     for key, item in config.items():
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
        243     name = get_registered_name(instance.__class__)
        244     try:
    --> 245       config = instance.get_config()
        246     except NotImplementedError as e:
        247       if _SKIP_FAILED_SERIALIZATION:
    
    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in get_config(self)
       2252 
       2253   def get_config(self):
    -> 2254     raise NotImplementedError
       2255 
       2256   @classmethod
    
    NotImplementedError: 
    
    opened by Bibhash123 1
  • Invalid argument

    Invalid argument

    this is my basic model

    
    with tpu_strategy.scope():
        model = tf.keras.Sequential([
                            tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(data, mode="torch"), 
                                                                input_shape=[224,224, 3]),
                            SwinTransformer('swin_tiny_224', include_top=False, pretrained=True, use_tpu=True),
                            tf.keras.layers.Dense(1, activation='sigmoid')
                                            ])
    
    model.compile(loss = tf.keras.losses.BinaryCrossentropy(),
                              optimizer = tf.keras.optimizers.Adam(learning_rate=cfg['LEARNING_RATE']),
                              metrics   = RMSE)
    
    

    I am getting this error,

    (3) Invalid argument: {{function_node __inference_train_function_705020}} Reshape's input dynamic dimension is decomposed into multiple output dynamic dimensions, but the constraint is ambiguous and XLA can't infer the output dimension %reshape.12202 = f32[256,144,576]{2,1,0} reshape(f32[36864,576]{1,0} %transpose.12194), metadata={op_type="Reshape" op_name="sequential_40/swin_large_384/sequential_39/basic_layer_28/sequential_35/swin_transformer_block_169/window_attention_169/layers0/blocks1/attn/qkv/Tensordot"}. [[{{node TPUReplicate/_compile/_17658394825749957328/_4}}]] [[tpu_compile_succeeded_assert/_11424487196827204192/_5/_209]]

    opened by AliKayhanAtay 1
  • relative_position_bias_table initialization

    relative_position_bias_table initialization

    Hi, In the official code, relative_position_bias_table is initialized in a truncated normal distribution. Is that part missing in this repo?

    Official code: https://github.com/microsoft/Swin-Transformer/blob/6bbd83ca617db8480b2fb9b335c476ffaf5afb1a/models/swin_transformer.py#L110

    This implem https://github.com/rishigami/Swin-Transformer-TF/blob/8986ca7b0e1f984437db2d8f17e0ecd87fadcd4f/swintransformer/model.py?_pjax=%23js-repo-pjax-container%2C%20div%5Bitemtype%3D%22http%3A%2F%2Fschema.org%2FSoftwareSourceCode%22%5D%20main%2C%20%5Bdata-pjax-container%5D#L70

    opened by gathierry 1
  • Image size other than default ones doesn't work

    Image size other than default ones doesn't work

    • Notebook: https://colab.research.google.com/drive/1nqYkQCUzShkVdqGxW4TyMrtAb0n5MBZR#scrollTo=G9ZVlphmqD7d Issue:
    • In swin_tiny_224 I've tried multiple of 224, 512x512, multiple of window_size. But nothing seems to work other than the 224x224.
    • Same goes for swin_large_384, only default size 384x384 works.

    I'm wondering if this is expected behavior or not. Is there any way to make it work for non-square image?

    opened by awsaf49 1
  • Added 3D support for SwinTransformerModel, ie for medical imaging tasks

    Added 3D support for SwinTransformerModel, ie for medical imaging tasks

    Tested and working, ie:

    IMAGE_SIZE = [112, 112, 112]
    NUM_CLASSES = 10
    
    model_3d = tf.keras.Sequential([
      swin_transformer_nd.SwinTransformerModel(img_size=IMAGE_SIZE, patch_size=(4, 4, 4), depths=[2, 2, 6]),
      tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
    ])
    model_3d.compile(tf.keras.optimizers.Adam(), "categorical_crossentropy")
    
    for i in range(100):
        x = np.zeros([1, *IMAGE_SIZE, 1])
        y = tf.zeros([1, NUM_CLASSES])
        
        model_3d.fit(x, y)
        print("Trained on a batch")
    
    opened by MohamadZeina 0
  • Could you provide weights convert script?

    Could you provide weights convert script?

    I tried code and weights you provided, and find the performance is bad. Could you pleaase to provide weights convert script for me to figure out this issue?

    Many thanks

    opened by edwardyehuang 0
  • tf load model is erro

    tf load model is erro

    import tensorflow as tf from swintransformer import SwinTransformer model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]), SwinTransformer('swin_tiny_224', include_top=False, pretrained=True), tf.keras.layers.Dense(NUM_CLASSES, activation='softmax') ])

    tf can't load pre trained model。this step is errro

    opened by jangjiun 0
  • Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel)

    Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel)

    Has anyone tried to use the pretrained model with TimeDistributed layer ?

    model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), 
    input_shape=[224,224, 3]), SwinTransformer('swin_base_224', include_top=False, pretrained=True)])
    
    model_f = models.Sequential()
    	model.add(TimeDistributed(model, input_shape= (8,224,224,3)) 
    
    

    I get the following error:

    NotImplementedError: Exception encountered when calling layer "time_distributed" (type TimeDistributed).
    
    Please run in eager mode or implement the `compute_output_shape` method on your layer (SwinTransformerModel).
    
    Call arguments received by layer "time_distributed" (type TimeDistributed):
      • inputs=tf.Tensor(shape=(None, 8, 224, 224, 3), dtype=float32)
      • training=False
    
    
    opened by atelili 0
Releases(v0.1-tf-swin-weights)
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022