Code for "On Memorization in Probabilistic Deep Generative Models"

Overview

On Memorization in Probabilistic Deep Generative Models

This repository contains the code necessary to reproduce the experiments in On Memorization in Probabilistic Deep Generative Models. You can also use this code to measure memorization in other types of probabilistic deep generative models. If you use our code in your own work please cite the paper using, for instance, the following BibTeX entry:

@article{van2021memorization,
  title={On Memorization in Probabilistic Deep Generative Models},
  author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
  journal={arXiv preprint arXiv:2106.03216},
  year={2021}
}

If you have any questions or encounter an issue when using this code, please send an email to gertjanvandenburg at gmail dot com.

Introduction

The files in the scripts directory are needed to reproduce the experiments and generate the figures in the paper. The experiments are organized using the Makefile provided. To reproduce the experiments or recreate the figures from the analysis, you'll have to install a number of dependencies. We use PyTorch to implement the deep learning algorithms. If you don't wish to re-run all the models, you can download the result files used in the paper (see below).

The scripts are all written in Python, and the necessary external dependencies can be found in the requirements.txt file. These can be installed using:

$ pip install -r requirements.txt

To recreate the figures the following system dependencies are also needed: pdflatex, latexmk, lualatex, and make. These programs are available for all major platforms.

Reproducing the results

To train the models on the different data sets, you can run:

$ make memorization

Note that depending on your machine this may take some time, so it might be easier to simply download the result files instead. It is also worth mentioning that while we have made an effort to ensure reproducibility by setting the random seed in PyTorch, platform or package version differences may result in slightly different output files (see also PyTorch Reproducibility).

All figures in the paper are generated from the raw result files using Python scripts. First, the summarize.py script takes the raw result files and creates summary files for each data set. Next, the analysis scripts are used to generate the figures, most of which are LaTeX files that require compilation using PDFLaTeX or LuaLaTeX. Simply run:

$ make analysis

to create the summaries and the output files. When using the result files linked below this will give the exact same figures as shown in the paper.

Result files

Due to their size, the raw result files are not contained in this repository, but can be downloaded separately from this link (about 2.6GB). After downloading the results.zip file, unpack it and move the results directory to where you've cloned this repository (so adjacent to the scripts directory). Below is a concise overview of the necessary commands:

$ git clone https://github.com/alan-turing-institute/memorization
$ cd memorization
$ wget https://gertjanvandenburg.com/projects/memorization/results.zip # or download the file in some other way
$ unzip results.zip
$ touch results/*/*/*          # update modification time of the result files
$ make analysis                # optionally, run ``make -n analysis`` first to see what will happen

After unpacking the zip file, you can optionally verify the integrity of the results using the SHA-256 checksums provided:

$ sha256sum --check results.sha256

License

The code in this repository is licensed under the MIT license. See the LICENSE file for further details. Reuse of the code in this repository is allowed, but should cite our paper.

Notes

If you find any problems or have a suggestion for improvement of this repository, please let me know as it will help make this resource better for everyone.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022