Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Overview

Open In Colab

Update on 2021.09

Here is the package torchsubband I wrote for subband decomposition.

https://github.com/haoheliu/torchsubband

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet)

ranking

Introduction

This repo contains the pretrained Music Source Separation models I submitted to the 2021 ISMIR MSS Challenge. We only participate the Leaderboard A, so these models are solely trained on MUSDB18HQ.

You can use this repo to separate 'bass', 'drums', 'vocals', and 'other' tracks from a music mixture. Also we provides our vocals and other models' training pipline. You can train your own model easily.

As is shown in the following picture, in leaderboard A, we(ByteMSS) achieved the 2nd on Vocal score and 5th on average score. For bass and drums separation, we directly use the open-sourced demucs model. It's trained with only MUSDB18HQ data, thus is qualified for LeaderBoard A.

ranking

1. Usage (For MSS)

1.1 Prepare running environment

First you need to clone this repo:

git clone https://github.com/haoheliu/2021-ISMIR-MSS-Challenge-CWS-PResUNet.git

Install the required packages

cd 2021-ISMIR-MSS-Challenge-CWS-PResUNet
pip3 install --upgrade virtualenv==16.7.9 # this version virtualenv support the --no-site-packages option
virtualenv --no-site-packages env_mss # create new environment
source env_mss/bin/activate # activate environment
pip3 install -r requirements.txt # install requirements

You'd better have wget and unzip command installed so that the scripts can automatically download pretrained models and unzip them.

1.2 Use pretrained model

To use the pretrained model to conduct music source separation. You can run the following demos. If it's the first time you run this program, it will automatically download the pretrained models.

python3 main -i <input-wav-file-path/folder> 
             -o <output-path-dir> 
             -s <sources-to-separate>  # vocals bass drums other (all four stems by default)
             --cuda  # if wanna use GPU, use this flag
             # --wiener  # if wanna use wiener filtering, use this flag. 
             # '--wiener' can take effect only when separation of all four tracks are done or you separate four tracks at the same time.
             
# <input-wav-file-path> is the .wav file to be separated or a folder containing all .wav mixtures.
# <output-path-dir> is the folder to store the separation results 
# python3 main.py -i <input-wav-file-path> -o <output-path-dir>
# Separate a single file to four sources
python3 main.py -i example/test/zeno_sign_stereo.wav -o example/results -s vocals bass drums other
# Separate all the files in a folder
python3 main.py -i example/test/ -o example/results
# Use GPU Acceleration
python3 main.py -i example/test/zeno_sign_stereo.wav -o example/results --cuda
# Separate all the files in a folder using GPU and wiener filtering post processing (may introduce new distortions, make the results even worse.)
python3 main.py -i example/test -o example/results --cuda # --wiener

Each pretrained model in this repo take us approximately two days on 8 V100 GPUs to train.

1.3 Train new MSS models from scratch

1.3.1 How to train

For the training data:

  • If you havn't download musdb18hq, we will automatically download the dataset for you by running the following command.
  • If you have already download musdb18hq, you can put musdb18hq.zip or musdb18hq folder into the data folder and run init.sh to prepare this dataset.
source init.sh

Finally run either of these two commands to start training.

# For track 'vocals', we use a 4 subbands resunet to perform separation. 
# The input of model is mixture and its output is vocals waveform.
# Note: Batchsize is set to 16 by default. Check your hard ware configurations to avoid GPU OOM.
source models/resunet_conv8_vocals/run.sh

# For track 'other', we also use a 4 subbands resunet to perform separation.
# But for this track, we did a little modification.
# The input of model is mixture, and its output are bass, other and drums waveforms. (bass and drums are only used during training) 
# We calculate the losses for "bass","other", and "drums" these three sources together.
# Result shows that joint training is beneficial for 'other' track.
# Note: Batchsize is set to 16 by default. Check your hard ware configurations to avoid GPU OOM.
source models/resunet_joint_training_other/run.sh
  • By default, we use batchsize 8 and 8 gpus for vocal and batchsize 16 and 8 gpus for other. You can custom your own by modifying parameters in the above run.sh files.

  • Training logs will be presented in the mss_challenge_log folder. System will perform validations every two epoches.

Here we provide the result of a test run: 'source models/resunet_conv8_vocals/run.sh'.

ranking

1.3.2 Use the model you trained

To use the the vocals and the other model you trained by your own. You need to modify the following two variables in the predictor.py to the path of your models.

41 ...
42  v_model_path = <path-to-your-vocals-model>
43  o_model_path = <path-to-your-other-model>
44 ...

1.4 Model Evaluation

Since the evaluation process is slow, we separate the evaluation process out as a single task. It's conducted on the validation results generated during training.

Steps:

  1. Locate the path of the validation result. After training, you will get a validation folder inside your loging directory (mss_challenge_log by default).

  2. Determine which kind of source you wanna evaluate (bass, vocals, others or drums). Make sure its results present in the validation folder.

  3. Run eval.sh with two arguments: the source type and the validation results folder (automatic generated after training in the logging folder).

For example:

# source eval.sh <source-type> <your-validation-results-folder-after-training> 

# evaluate vocal score
source eval.sh vocals mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations
# evaluate bass score
source eval.sh bass mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations
# evaluate drums score
source eval.sh drums mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations
# evaluate other score
source eval.sh other mss_challenge_log/2021-08-11-subband_four_resunet_for_vocals-vocals/version_0/validations

The system will save the overall score and the score for each song in the result folder.

For faster evalution, you can adjust the parameter MAX_THREAD insides the evaluator/eval.py to determine how many threads you gonna use. It's value should fit your computer resources. You can start with MAX_THREAD=3 and then try 6, 10 or 16.

2. Usage (For customizing sound source)

This feature allows you to separate an arbitrary sound source as long as you got enough training data.

This colab demonstrates the following procedure.

Step1: Prepare running environment.

! git clone https://github.com/haoheliu/2021-ISMIR-MSS-Challenge-CWS-PResUNet.git
# MAKE SURE SOX IS INSTALLED
#!apt-get install libsox-fmt-all libsox-dev sox > /dev/null
%cd 2021-ISMIR-MSS-Challenge-CWS-PResUNet
! pip3 install -r requirements.txt

Step2: Organize your data

I assume that you have already got the following two disjoint kinds of data (there are sample datas in this repo when you clone it):

  1. the_source_you_want_to_get (for example, speech data)
  2. the_source_you_want_to_remove (for example, noise data)
  • Split and put these data into data/your_data folder:
    • train(about 90%~99%): training data (used during training)
      • the_source_you_want_to_get: put your target source (the source you'd like to separate out) audios into this folder
      • the_source_you_want_to_remove: put undesired sources audios into this folder
    • test(about 1%~10%): testing data (used during validation, every two epoches)
      • the_source_you_want_to_get
      • the_source_you_want_to_remove
  • Then run:
# Automatic parsing your data
source init_your_data.sh

Step3: Start training!

  • Use the same MSS model
source models/resunet_conv8_vocals/run.sh

This script use 8 gpus with 8 batchsize by default. You may need to modify this run.sh to fit in your machine.

  • Use a smaller model (1/8)
source models/resunet_conv1_vocals/run.sh

Log file will be automatic generated. You can check validation results during training, which update every two epoches.

Hints:

  • To perform separation on real test data, you can upload validation data as real_mixture + silent.
  • To make an epoch shorter, you can modify the parameter HOURS_FOR_A_EPOCH inside models/dataloader/loaders/individual_loader.py.

3. Reference

If you find our code useful for your research, please consider citing:

@misc{liu2021cwspresunet,
    title={CWS-PResUNet: Music Source Separation with Channel-wise Subband Phase-aware ResUNet},
    author={Haohe Liu and Qiuqiang Kong and Jiafeng Liu},
    year={2021},
    eprint={2112.04685},
    archivePrefix={arXiv},
    primaryClass={cs.SD}
}
@inproceedings{Liu2020,   
  author={Haohe Liu and Lei Xie and Jian Wu and Geng Yang},   
  title={{Channel-Wise Subband Input for Better Voice and Accompaniment Separation on High Resolution Music}},   
  year=2020,   
  booktitle={Proc. Interspeech 2020},   
  pages={1241--1245},   
  doi={10.21437/Interspeech.2020-2555},   
  url={http://dx.doi.org/10.21437/Interspeech.2020-2555}   
}.

4. Change log

2021-11-20: Update the demucs version. Now I directly use the mdx version demucs in this repo to separate bass and drums.

Owner
Leo
Speech Quality Enhancement | Music Source Separation | Speech Synthesis
Leo
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022