NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

Overview

NeoDTI

NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

Recent Update 09/06/2018

L2 regularization is added.

Requirements

  • Tensorflow (tested on version 1.0.1 and version 1.2.0)
  • tflearn
  • numpy (tested on version 1.13.3 and version 1.14.0)
  • sklearn (tested on version 0.18.1 and version 0.19.0)

Quick start

To reproduce our results:

  1. Unzip data.zip in ./data.
  2. Run NeoDTI_cv.py to reproduce the cross validation results of NeoDTI. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.
    -r: Positive and negative. Two choices: ten and all, the former one sets the positive:negative = 1:10, the latter one considers all unknown DTIs as negative examples. Default: ten.
    -t: Test scenario. The DTI matrix to be tested. Choices are: o, mat_drug_protein.txt will be tested; homo, mat_drug_protein_homo_protein_drug.txt will be tested; drug, mat_drug_protein_drug.txt will be tested; disease, mat_drug_protein_disease.txt will be tested; sideeffect, mat_drug_protein_sideeffect.txt will be tested; unique, mat_drug_protein_drug_unique.txt will be tested. Default: o.
  3. Run NeoDTI_cv_with_aff.py to reproduce the cross validation results of NeoDTI with additional compound-protein binding affinity data. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.

Data description

  • drug.txt: list of drug names.
  • protein.txt: list of protein names.
  • disease.txt: list of disease names.
  • se.txt: list of side effect names.
  • drug_dict_map: a complete ID mapping between drug names and DrugBank ID.
  • protein_dict_map: a complete ID mapping between protein names and UniProt ID.
  • mat_drug_se.txt : Drug-SideEffect association matrix.
  • mat_protein_protein.txt : Protein-Protein interaction matrix.
  • mat_drug_drug.txt : Drug-Drug interaction matrix.
  • mat_protein_disease.txt : Protein-Disease association matrix.
  • mat_drug_disease.txt : Drug-Disease association matrix.
  • mat_protein_drug.txt : Protein-Drug interaction matrix.
  • mat_drug_protein.txt : Drug-Protein interaction matrix.
  • Similarity_Matrix_Drugs.txt : Drug & compound similarity scores based on chemical structures of drugs ([0,708) are drugs, the rest are compounds).
  • Similarity_Matrix_Proteins.txt : Protein similarity scores based on primary sequences of proteins.
  • mat_drug_protein_homo_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with similar drugs (i.e., drug chemical structure similarities > 0.6) or similar proteins (i.e., protein sequence similarities > 40%) were removed (see the paper).
  • mat_drug_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar drug interactions (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_sideeffect.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar side effects (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_disease.txt: Drug-Protein interaction matrix, in which DTIs with drugs or proteins sharing similar diseases (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_unique: Drug-Protein interaction matrix, in which known unique and non-unique DTIs were labelled as 3 and 1, respectively, the corresponding unknown ones were labelled as 2 and 0 (see the paper for the definition of unique).
  • mat_compound_protein_bindingaffinity.txt: Compound-Protein binding affinity matrix (measured by negative logarithm of Ki).

All entities (i.e., drugs, compounds, proteins, diseases and side-effects) are organized in the same order across all files. These files: drug.txt, protein.txt, disease.txt, se.txt, drug_dict_map, protein_dict_map, mat_drug_se.txt, mat_protein_protein.txt, mat_drug_drug.txt, mat_protein_disease.txt, mat_drug_disease.txt, mat_protein_drug.txt, mat_drug_protein.txt, Similarity_Matrix_Proteins.txt, are extracted from https://github.com/luoyunan/DTINet.

Contacts

If you have any questions or comments, please feel free to email Fangping Wan (wfp15[at]tsinghua[dot]org[dot]cn) and/or Jianyang Zeng (zengjy321[at]tsinghua[dot]edu[dot]cn).

Owner
PhD of Computer Science
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022