The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Overview

Improved Techniques for Training Score-Based Generative Models

This repo contains the official implementation for the paper Improved Techniques for Training Score-Based Generative Models.

by Yang Song and Stefano Ermon, Stanford AI Lab.

Note: The method has been extended by the subsequent work Score-Based Generative Modeling through Stochastic Differential Equations (code) that allows better sample quality and exact log-likelihood computation.


We significantly improve the method proposed in Generative Modeling by Estimating Gradients of the Data Distribution. Score-based generative models are flexible neural networks trained to capture the score function of an underlying data distribution—a vector field pointing to directions where the data density increases most rapidly. We present new techniques to improve the performance of score-based generative models, scaling them to high resolution images that are previously impossible. Without requiring adversarial training, they can produce sharp and diverse image samples that rival GANs.

samples

(From left to right: Our samples on FFHQ 256px, LSUN bedroom 128px, LSUN tower 128px, LSUN church_outdoor 96px, and CelebA 64px.)

Running Experiments

Dependencies

Run the following to install all necessary python packages for our code.

pip install -r requirements.txt

Project structure

main.py is the file that you should run for both training and sampling. Execute python main.py --help to get its usage description:

usage: main.py [-h] --config CONFIG [--seed SEED] [--exp EXP] --doc DOC
               [--comment COMMENT] [--verbose VERBOSE] [--test] [--sample]
               [--fast_fid] [--resume_training] [-i IMAGE_FOLDER] [--ni]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --exp EXP             Path for saving running related data.
  --doc DOC             A string for documentation purpose. Will be the name
                        of the log folder.
  --comment COMMENT     A string for experiment comment
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  --test                Whether to test the model
  --sample              Whether to produce samples from the model
  --fast_fid            Whether to do fast fid test
  --resume_training     Whether to resume training
  -i IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The folder name of samples
  --ni                  No interaction. Suitable for Slurm Job launcher

Configuration files are in config/. You don't need to include the prefix config/ when specifying --config . All files generated when running the code is under the directory specified by --exp. They are structured as:

<exp> # a folder named by the argument `--exp` given to main.py
├── datasets # all dataset files
├── logs # contains checkpoints and samples produced during training
│   └── <doc> # a folder named by the argument `--doc` specified to main.py
│      ├── checkpoint_x.pth # the checkpoint file saved at the x-th training iteration
│      ├── config.yml # the configuration file for training this model
│      ├── stdout.txt # all outputs to the console during training
│      └── samples # all samples produced during training
├── fid_samples # contains all samples generated for fast fid computation
│   └── <i> # a folder named by the argument `-i` specified to main.py
│      └── ckpt_x # a folder of image samples generated from checkpoint_x.pth
├── image_samples # contains generated samples
│   └── <i>
│       └── image_grid_x.png # samples generated from checkpoint_x.pth       
└── tensorboard # tensorboard files for monitoring training
    └── <doc> # this is the log_dir of tensorboard

Training

For example, we can train an NCSNv2 on LSUN bedroom by running the following

python main.py --config bedroom.yml --doc bedroom

Log files will be saved in <exp>/logs/bedroom.

Sampling

If we want to sample from NCSNv2 on LSUN bedroom, we can edit bedroom.yml to specify the ckpt_id under the group sampling, and then run the following

python main.py --sample --config bedroom.yml -i bedroom

Samples will be saved in <exp>/image_samples/bedroom.

We can interpolate between different samples (see more details in the paper). Just set interpolation to true and an appropriate n_interpolations under the group of sampling in bedroom.yml. We can also perform other tasks such as inpainting. Usages should be quite obvious if you read the code and configuration files carefully.

Computing FID values quickly for a range of checkpoints

We can specify begin_ckpt and end_ckpt under the fast_fid group in the configuration file. For example, by running the following command, we can generate a small number of samples per checkpoint within the range begin_ckpt-end_ckpt for a quick (and rough) FID evaluation.

python main.py --fast_fid --config bedroom.yml -i bedroom

You can find samples in <exp>/fid_samples/bedroom.

Pretrained Checkpoints

Link: https://drive.google.com/drive/folders/1217uhIvLg9ZrYNKOR3XTRFSurt4miQrd?usp=sharing

You can produce samples using it on all datasets we tested in the paper. It assumes the --exp argument is set to exp.

References

If you find the code/idea useful for your research, please consider citing

@inproceedings{song2020improved,
  author    = {Yang Song and Stefano Ermon},
  editor    = {Hugo Larochelle and
               Marc'Aurelio Ranzato and
               Raia Hadsell and
               Maria{-}Florina Balcan and
               Hsuan{-}Tien Lin},
  title     = {Improved Techniques for Training Score-Based Generative Models},
  booktitle = {Advances in Neural Information Processing Systems 33: Annual Conference
               on Neural Information Processing Systems 2020, NeurIPS 2020, December
               6-12, 2020, virtual},
  year      = {2020}
}

and/or our previous work

@inproceedings{song2019generative,
  title={Generative Modeling by Estimating Gradients of the Data Distribution},
  author={Song, Yang and Ermon, Stefano},
  booktitle={Advances in Neural Information Processing Systems},
  pages={11895--11907},
  year={2019}
}
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022