Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

Related tags

Deep Learningmmo
Overview

MMO: Meta Multi-Objectivization for Software Configuration Tuning

This repository contains the data and code for the following paper that is currently submitting for publication:

Tao Chen and Miqing Li. MMO: Meta Multi-Objectivization for Software Configuration Tuning.

Introduction

In software configuration tuning, different optimizers have been designed to optimize a single performance objective (e.g.,minimizing latency), yet there is still little success in preventing (or mitigating) the search from being trapped in local optima — a hard nut to crack due to the complex configuration landscape and expensive measurement. To tackle this challenge, in this paper, we take a different perspective. Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly, we show how to effectively use the MMO model without worrying about its weight — the only yet highly sensitive parameter that can determine its effectiveness. This is achieved by designing a new normalization method that allows an optimizer to adaptively find the right objective bounds when guiding the tuning. Experiments on 22 cases from 11 real-world software systems/environments confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 18 out of 22 cases while achieving up to 2.09x speedup. For 15 cases, the new normalization also enables the MMO model to outperform the instance when using it with the normalization proposed in our prior FSE work under pre-tuned best weights, saving a great amount of resources which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can consolidate FLASH, a recent model-based tuning tool, on 15 out of 22 cases with 1.22x speedup in general.

Data Result

The dataset of this work can be accessed via the Zenodo link here. In particular, the zip file contains all the raw data as reported in the paper; most of the structures are self-explained but we wish to highlight the following:

  • The data under the folder 1.0-0.0 and 0.0-1.0 are for the single-objective optimizers. The former uses O1 as the target performance objective while the latter uses O2 as the target. The data under other folders named by the subject systems are for the MMO and PMO. The result under the weight folder 1.0 are for MMO while all other folders represent different weight values, containing the data for MMO-FSE.

  • For those data of MMO, MMO-FSE, and PMO, the folder 0 and 1 denote using uses O1 and O2 as the target performance objective, respectively.

  • In the lowest-level folder where the data is stored (i.e., the sas folder), SolutionSet.rtf contains the results over all repeated runs; SolutionSetWithMeasurement.rtf records the results over different numbers of measurements.

Souce Code

The code folder contains all the information about the source code, as well as an executable jar file in the executable folder .

Running the Experiments

To run the experiments, one can download the mmo-experiments.jar from the aforementioned repository (under the executable folder). Since the artifacts were written in Java, we assume that the JDK/JRE has already been installed. Next, one can run the code using java -jar mmo-experiments.jar [subject] [runs], where [subject] and [runs] denote the subject software system and the number of repeated run (this is an integer and 50 is the default if it is not specified), respectively. The keyword for the systems/environments used in the paper are:

  • trimesh
  • x264
  • storm-wc
  • storm-rs
  • dnn-sa
  • dnn-adiac
  • mariadb
  • vp9
  • mongodb
  • lrzip
  • llvm

For example, running java -jar mmo-experiments.jar trimesh would execute experiments on the trimesh software for 50 repeated runs.

For each software system, the experiment consists of the runs for MMO, MMO-FSE with all weight values, PMO and the four state-of-the-art single-objective optimizers, as well as the FLASH and FLASH_MMO. All the outputs would be stored in the results folder at the same directory as the executable jar file.

All the measurement data of the subject configurable systems have been placed inside the mmo-experiments.jar.

Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022