This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

Overview

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version)

methodology

This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural decision tree born form a large search space, published as a conference paper on ICCV 2021, written by [Ying Chen](https://www.vipazoo.cn/people/chenying.html) et al. The code was written by [Haoling Li](https://github.com/HollyLee2000) and Ying Chen, and supported by Jie Song. This paddle implementation produces results comparable to the original PyTorch veision.

Prerequisites

  • Linux or Window
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/HollyLee2000/SeBoW-paddle
cd SeBoW-paddle

train/test introduction

  • Edit ForestModel.py to choose your dataset and Forest structure(the original large search space), by now only Cifar100 dataset has been tested on this paddle version. If you want to conduct on other datasets you need just do some adjustment and rewirte the dataloder

  • run train_cifar100_ForestModel.py to get the result of the forest model.

  • run sender_select.py to get the output of the sender(average router probability for each section of the Forest model), then retain the node in i-th section if its conditional probability obtained from previous senders is greater than the threshold C/(2 × Ci), in the original paper, C=2 and Ci means the number of the learners in i-th section.

  • run receiver_droupout.py, choose the only parent of each node with the largest weight in sampling vectors produced by the receiver, then you will get the final tree-structure.

  • Edit Forest_to_tree.py to apply your tree-structured model, during the retraining phase you will run train_tree.py to retrain the derived neural tree from scratch

  • The inference can be executed in two manners: multi-path inference and single-path inference. Multipath inference computes the weighted predictive distribution by running over all possible paths in the derived neural tree, such that all solvers in the tree will contribute to the final prediction(you have done this). However, in the single-path inference, only the most probable paths are executed based on the routing probability from routers, which enjoys less inference cost with some accuracy drop. You can run single-inference.py to apply this, but don't forget to adjust the structure of Tree_single_inference.py

Acknowledgments

The work is inspired by VIPA.

Owner
HollyLee
HollyLee
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022