FLVIS: Feedback Loop Based Visual Initial SLAM

Related tags

Deep LearningFLVIS
Overview

FLVIS

Feedback Loop Based Visual Inertial SLAM

1-Video

cla

EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform

2-Relevent Publication:

Under Review, a pre-print version can be found here

3-Support Hardware/Dataset:

Intel RealSense D435i Camera
EuRoC MAV Dataset

4-Build The Project

We have tested in the following environment:
Ubuntu 16.04 + ROS Kinetic
Ubuntu 18.04 + ROS melodic
Clone the repository to the catkin work space eg. /catkin_ws/src

git clone https://github.com/Ttoto/FLVIS.git

Install 3rd Part library

cd catkin_ws/src/FLVIS/3rdPartLib/
./install3rdPartLib.sh

Compile

cd ~/catkin_ws
catkin_make

5-Verification

5.1 D435i Camera Depth Mode

5.1.1 Use our recorded rosbag

Download the dataset Link-melab_sn943222072828.bag to /bag folder
Decompress the rosbag:

rosbag decompress melab_sn943222072828.bag

run the following launch files:

roslaunch flvis rviz.launch
roslaunch flvis flvis_bag.launch
5.1.2 Use your own camera:

Install the realsense driver and its ros wrapper
Boot the d435i camera and echo the camera infomation

roslaunch flvis d435i_depth.launch
rostopic echo /camera/infra1/camera_info

You will get the camera infomation like: As shown, where the resolution is 640x480 and fx=384.16455078125; fy=384.16455078125; cx=320.2144470214844;cy=238.94403076171875.
Edit these information in the config yaml file (say: /launch/d435i/sn943222072828_depth.yaml):

image_width: 640
image_height: 480
cam0_intrinsics: [384.16455078125, 384.16455078125, 320.2144470214844, 238.94403076171875]#fx fy cx cy
cam0_distortion_coeffs: [0.0, 0.0, 0.0, 0.0]#k1 k2 r1 r2

In the launch file "flvis_d435i.launch", make sure "/yamlconfigfile" is point to the edited config file

<param name="/yamlconfigfile" type="string" value="$(find flvis)/launch/d435i/sn943222072828_depth.yaml"/>

run the following launch files:

roslaunch flvis rviz.launch
roslaunch flvis flvis_d435i_depth.launch

5.2 D435i Camera Stero Mode

Like what we did in 5.1.2, we need to config the sn943222072828_stereo.yaml
Note that, by default the two camera share the same intrinsic parameters, and the baseline length is 0.05m:

cam0_intrinsics: [384.16455078125, 384.16455078125, 320.2144470214844, 238.94403076171875]#fx fy cx cy
cam0_distortion_coeffs: [0.0, 0.0, 0.0, 0.0]#k1 k2 r1 r2
cam1_intrinsics: [384.16455078125, 384.16455078125, 320.2144470214844, 238.94403076171875]#fx fy cx cy
cam1_distortion_coeffs: [0.0, 0.0, 0.0, 0.0]#k1 k2 r1 r2
T_cam0_cam1:
[ 1.0,  0.0,  0.0,  0.05,
  0.0,  1.0,  0.0,  0.0,
  0.0,  0.0,  1.0,  0.0,
  0.0,  0.0,  0.0,  1.0]

5.3 EuRoC MAV Dataset

Download the dataset(say MH_05_difficult) into the bag folder:

roscd flvis/bag/
wget http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/machine_hall/MH_05_difficult/MH_05_difficult.bag

Edit the corresponding bag name in flvis_euroc_mav.launch file:

<node pkg="rosbag" type="play" name="rosbag" args="$(find flvis)/bag/MH_05_difficult.bag"/>

run the following launch files:

roslaunch flvis rviz.launch
roslaunch flvis flvis_euroc_mav.launch

Maintainer:

Shengyang Chen(Dept.ME,PolyU): [email protected]
Yajing Zou(Dept.LSGI,PolyU):[email protected]

Owner
UAV Lab - HKPolyU
The UAV Lab of The Hong Kong Polytechnic University
UAV Lab - HKPolyU
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022