This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

Overview

On Quantitative Evaluations of Counterfactuals

Install

To install required packages with conda, run the following command:

> conda env create -f requirements.yml

Code

The code contains all the evaluation metrics used in the paper as well as the models and the data.

To evaluate methods, you need to choose a config from the configs directory and to choose which metric to apply. The code will then evaluate the chosen metrics on counterfactuals from all three methods (GB, GL, GEN) and store the results in an appropriate subdirectory in outputs. If you, e.g., want to run all metrics on the MNIST dataset, use the following command:

(cfeval) > python main.py --eval -c configs/mnist/mnist.ini -a

Afterwards you can enumerate the directory by

(cfeval) > python main.py --list

to get an output like the following:

> Listing dirs
000: ./output/celeba_makeup_[0]
001: ./output/fake_mnist_[0]
002: ./output/mnist_0_1_[0]
003: ./output/mnist_[0]

Now, results can be printed for the MNIST dataset (idx 3 above) by

(cfeval) > python main.py --print -c 3 

To get a result like

# # # # # # # # # # # # # # # # # # # # 
# MNIST
# # # # # # # # # # # # # # # # # # # # 
Method \ Metric    TargetClassValidity    ElasticNet    IM1          IM2             FID  Oracle
-----------------  ---------------------  ------------  -----------  -----------  ------  ------------
GB                 99.59 (0.13)           16.07 (0.18)  0.99 (0.00)  0.55 (0.01)   50.23  73.38 (0.87)
GL                 100.00 (0.00)          42.76 (0.31)  0.99 (0.00)  0.53 (0.00)  308.43  37.71 (0.95)
GEN                99.97 (0.03)           99.17 (0.58)  0.88 (0.00)  0.17 (0.00)   90.73  93.13 (0.50)

Directory overview:

File Description
ckpts Contains all the (Keras) models used by the various metrics.
data Contains the data used, both counterfactual examples from GB, GL, and GEN, and original input data.
configs Contains config files specifying experimental details like dataset, normalization, etc.
data Contains the data in numpy arrays.
dataset Code for loading data.
evaluate Implementations of all the metrics.
output Directory to hold computed results. Directory already contains results from paper.
config.py Reads config files from configs
constants.py Method and metric names.
listing.py Utility for indexing output dirs (see description below)
main.py Main file to run all code through.
print_results.py Utillity function for printing results from json files in the output directory.
Owner
Frederik Hvilshøj
PhD Student. Finishing PhD in Machine Learning Fall 2021.
Frederik Hvilshøj
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022