A state-of-the-art semi-supervised method for image recognition

Overview

Mean teachers are better role models

Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post

By Antti Tarvainen, Harri Valpola (The Curious AI Company)

Approach

Mean Teacher is a simple method for semi-supervised learning. It consists of the following steps:

  1. Take a supervised architecture and make a copy of it. Let's call the original model the student and the new one the teacher.
  2. At each training step, use the same minibatch as inputs to both the student and the teacher but add random augmentation or noise to the inputs separately.
  3. Add an additional consistency cost between the student and teacher outputs (after softmax).
  4. Let the optimizer update the student weights normally.
  5. Let the teacher weights be an exponential moving average (EMA) of the student weights. That is, after each training step, update the teacher weights a little bit toward the student weights.

Our contribution is the last step. Laine and Aila [paper] used shared parameters between the student and the teacher, or used a temporal ensemble of teacher predictions. In comparison, Mean Teacher is more accurate and applicable to large datasets.

Mean Teacher model

Mean Teacher works well with modern architectures. Combining Mean Teacher with ResNets, we improved the state of the art in semi-supervised learning on the ImageNet and CIFAR-10 datasets.

ImageNet using 10% of the labels top-5 validation error
Variational Auto-Encoder [paper] 35.42 ± 0.90
Mean Teacher ResNet-152 9.11 ± 0.12
All labels, state of the art [paper] 3.79
CIFAR-10 using 4000 labels test error
CT-GAN [paper] 9.98 ± 0.21
Mean Teacher ResNet-26 6.28 ± 0.15
All labels, state of the art [paper] 2.86

Implementation

There are two implementations, one for TensorFlow and one for PyTorch. The PyTorch version is probably easier to adapt to your needs, since it follows typical PyTorch idioms, and there's a natural place to add your model and dataset. Let me know if anything needs clarification.

Regarding the results in the paper, the experiments using a traditional ConvNet architecture were run with the TensorFlow version. The experiments using residual networks were run with the PyTorch version.

Tips for choosing hyperparameters and other tuning

Mean Teacher introduces two new hyperparameters: EMA decay rate and consistency cost weight. The optimal value for each of these depends on the dataset, the model, and the composition of the minibatches. You will also need to choose how to interleave unlabeled samples and labeled samples in minibatches.

Here are some rules of thumb to get you started:

  • If you are working on a new dataset, it may be easiest to start with only labeled data and do pure supervised training. Then when you are happy with the architecture and hyperparameters, add mean teacher. The same network should work well, although you may want to tune down regularization such as weight decay that you have used with small data.
  • Mean Teacher needs some noise in the model to work optimally. In practice, the best noise is probably random input augmentations. Use whatever relevant augmentations you can think of: the algorithm will train the model to be invariant to them.
  • It's useful to dedicate a portion of each minibatch for labeled examples. Then the supervised training signal is strong enough early on to train quickly and prevent getting stuck into uncertainty. In the PyTorch examples we have a quarter or a half of the minibatch for the labeled examples and the rest for the unlabeled. (See TwoStreamBatchSampler in Pytorch code.)
  • For EMA decay rate 0.999 seems to be a good starting point.
  • You can use either MSE or KL-divergence as the consistency cost function. For KL-divergence, a good consistency cost weight is often between 1.0 and 10.0. For MSE, it seems to be between the number of classes and the number of classes squared. On small datasets we saw MSE getting better results, but KL always worked pretty well too.
  • It may help to ramp up the consistency cost in the beginning over the first few epochs until the teacher network starts giving good predictions.
  • An additional trick we used in the PyTorch examples: Have two seperate logit layers at the top level. Use one for classification of labeled examples and one for predicting the teacher output. And then have an additional cost between the logits of these two predictions. The intent is the same as with the consistency cost rampup: in the beginning the teacher output may be wrong, so loosen the link between the classification prediction and the consistency cost. (See the --logit-distance-cost argument in the PyTorch implementation.)
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022