Digitalizing-Prescription-Image - PIRDS - Prescription Image Recognition and Digitalizing System is a OCR make with Tensorflow

Overview

Digitalizing-Prescription-Image

PIRDS - Prescription Image Recognition and Digitalizing System is a OCR make with Tensorflow that digitalises images of Prescription of Handwritten Texts by Doctors.


Abstract

PIRDS does the Digital transformation of hand-written prescription text using advance image processing techniques and deep learning methods. Image processing techniques helps to create images which are less noisy, and easily understandable for neural networks.

Once image with required configuration are obtained, they are fed to neural network model for training. The neural network model consists of, convolutional neural network for feature extraction, recurrent neural networks for dealing with character’s sequencing. We use connectionist temporal classification loss function which is required to be minimized to get good recognition of words from images.


Work Flow

  1. The raw data are one-page scans, provided as a Images/PDF. The first step is to anonymize the data. Hashes are calculated from document IDs, and a region of interest (ROI) is cut out of the document, which includes the handwriting, but which EXCLUDES any personal data, such as the physician’s signature, the date and place of decease, etc.
  2. This yields smaller images than the originals, and there is no link from the images back to the original scans. The second step is to clean the images. There is background text from the document template, and there are scan errors. We remove the background; we apply noise reduction and a slight blurring to close small gaps in the handwriting lines while retaining spaces between words.
  3. The third step is to crop the image to the smallest size possible containing the handwriting. The fourth step is to cut between the lines. Therefore, when the text has N lines, we end up with N image segments per original certificate.
  4. We then apply a neural network (NN) to predict what is written; with a calculated confidence of how certain, the NN is of the correctness of the prediction. Predictions that include unknown words require additional natural language processing (NLP) to map it to known words. Again, we calculate a confidence level.
  5. To summarize, the solution for reading the handwriting is a combination of image processing, deep learning, and natural language processing.
Owner
Akshat Surolia
Data Scientist, Specialized in Python, Hands on experience in Machine Learning, Computer Vision, Natural Langugage Processing and Recommendation Systems.
Akshat Surolia
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021