Tightness-aware Evaluation Protocol for Scene Text Detection

Overview

TIoU-metric

Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code.

State-of-the-art Results on Total-Text and CTW1500 (TIoU)

We sincerely appreciate the authors of recent and previous state-of-the-art methods for providing their results for evaluating TIoU metric in curved text benchmarks. The results are listed below:

Total-Text

Methods on Total-Text TIoU-Recall (%) TIoU-Precision (%) TIoU-Hmean (%) Publication
LSN+CC [paper] 48.4 59.8 53.5 arXiv 1903
Polygon-FRCNN-3 [paper] 47.9 61.9 54.0 IJDAR 2019
CTD+TLOC [paper][code] 50.8 62.0 55.8 arXiv 1712
ATRR [paper] 53.7 63.5 58.2 CVPR 2019
PSENet [paper][code] 53.3 66.9 59.3 CVPR 2019
CRAFT [paper] 54.1 65.5 59.3 CVPR 2019
TextField [paper] 58.0 63.0 60.4 TIP 2019
Mask TextSpotter [paper] 54.5 68.0 60.5 ECCV 2018
SPCNet [paper][code] 61.8 69.4 65.4 AAAI 2019

CTW1500

Methods on CTW1500 TIoU-Recall (%) TIoU-Precision (%) TIoU-Hmean (%) Publication
CTD+TLOC [paper][code] 42.5 53.9 47.5 arXiv 1712
ATRR [paper] 54.9 61.6 58.0 CVPR 2019
LSN+CC [paper] 55.9 64.8 60.0 arXiv 1903
PSENet [paper][code] 54.9 67.6 60.6 CVPR 2019
CRAFT [paper] 56.4 66.3 61.0 CVPR 2019
MSR [paper] 56.3 67.3 61.3 arXiv 1901
TextField [paper] 57.2 66.2 61.4 TIP 2019
TextMountain [paper] 60.7 68.1 64.2 arXiv 1811
PAN Mask R-CNN [paper] 61.0 70.0 65.2 WACV 2019

Description

Evaluation protocols plays key role in the developmental progress of text detection methods. There are strict requirements to ensure that the evaluation methods are fair, objective and reasonable. However, existing metrics exhibit some obvious drawbacks:

*Unreasonable cases obtained using recent evaluation metrics. (a), (b), (c), and (d) all have the same IoU of 0.66 against the GT. Red: GT. Blue: detection.
  • As shown in (a), previous metrics consider that the GT has been entirely recalled.

  • As shown in (b), (c), and (d), even if containing background noise, previous metrics consider such detection to have 100% precision.

  • Previous metrics consider detections (a), (b), (c), and (d) to be equivalent perfect detections.

  • Previous metrics severely rely on an IoU threshold. High IoU threshold may discard some satisfactory bounding boxes, while low IoU threshold may include several inexact bounding boxes.

To address many existing issues of previous evaluation metrics, we propose an improved evaluation protocol called Tightnessaware Intersect-over-Union (TIoU) metric that could quantify:

  • Completeness of ground truth

  • Compactness of detection

  • Tightness of matching degree

We hope this work can raise the attentions of the text detection evaluation metrics and serve as a modest spur to more valuable contributions. More details can be found on our paper.

Clone the TIoU repository

Clone the TIoU-metric repository

git clone https://github.com/Yuliang-Liu/TIoU-metric.git --recursive

Getting Started

Install required module

pip install Polygon2

Then run

python script.py -g=gt.zip -s=pixellinkch4.zip

After that you can see the evaluation resutls.

You can simply replace pixellinkch4.zip with your own dection results, and make sure your dection format follows the same as ICDAR 2015.

Joint Word&Text-Line Evaluation

To test your detection with our joint Word&Text-Line solution, simply

cd Word_Text-Line

Then run the code

python script.py -g=gt.zip -gl=gt_textline.zip -s=pixellinkch4.zip

Support Curved Text Evaluation

Curved text requires polygonal input with mutable number of points. To evaluate your results on recent curved text benchmarks Total-text or SCUT-CTW1500, you can refer to curved-tiou/readme.md.

Example Results

Qualitative results:

*Qualitative visualization of TIoU metric. Blue: Detection. Bold red: Target GT region. Light red: Other GT regions. Rec.: Recognition results by CRNN [24]. NED: Normalized edit distance. Previous metrics evaluate all detection results and target GTs as 100% precision and recall, respectively, while in TIoU metric, all matching pairs are penalized by different degrees. Ct is defined in Eq. 10. Ot is defined in Eq. 13. Please refer to our paper for all the references.

ICDAR 2013 results:

*Comparison of evaluation methods on ICDAR 2013 for general detection frameworks and previous state-of-the-art methods. det: DetEval. i: IoU. e1: End-to-end recognition results by using CRNN [24]. e2: End-to-end recognition results by using RARE [25]. t: TIoU.

Line chart:

*(a) X-axis represents the detection methods listed in the Table above, and Y-axis represents the values of the F-measures.

ICDAR 2015 results:

*Comparison of metrics on the ICDAR 2015 challenge 4. Word&Text-Line Annotations use our new solution to address OM and MO issues. i: IoU. s: SIoU. t: TIoU.

Citation

If you find our metric useful for your reserach, please cite

@article{liu2019tightness,
  title={Tightness-aware Evaluation Protocol for Scene Text Detection},
  author={Liu, Yuliang and Jin, Lianwen and Xie, Zecheng and Luo, Canjie and Zhang, Shuaitao and Xie, Lele},
  journal={CVPR},
  year={2019}
}

References

If you are insterested in developing better scene text detection metrics, some references recommended here might be useful.

[1] Wolf, Christian, and Jean-Michel Jolion. "Object count/area graphs for the evaluation of object detection and segmentation algorithms." International Journal of Document Analysis and Recognition (IJDAR) 8.4 (2006): 280-296.

[2] Calarasanu, Stefania, Jonathan Fabrizio, and Severine Dubuisson. "What is a good evaluation protocol for text localization systems? Concerns, arguments, comparisons and solutions." Image and Vision Computing 46 (2016): 1-17.

[3] Dangla, Aliona, et al. "A first step toward a fair comparison of evaluation protocols for text detection algorithms." 2018 13th IAPR International Workshop on Document Analysis Systems (DAS). IEEE, 2018.

[4] Shi, Baoguang, et al. "ICDAR2017 competition on reading chinese text in the wild (RCTW-17)." 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Vol. 1. IEEE, 2017.

Feedback

Suggestions and opinions of this metric (both positive and negative) are greatly welcome. Please contact the authors by sending email to [email protected] or [email protected].

Owner
Yuliang Liu
MMLab; South China University of Technology; University of Adelaide
Yuliang Liu
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022