FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

Overview

FaceVerse

FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset

Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang Ma, Liang Li, Yebin Liu CVPR 2022

Tsinghua University & Ant Group

[Dataset] [Project Page]

teaser

Abstract

We present FaceVerse, a fine-grained 3D Neural Face Model, which is built from hybrid East Asian face datasets containing 60K fused RGB-D images and 2K high-fidelity 3D head scan models. A novel coarse-to-fine structure is proposed to take better advantage of our hybrid dataset. In the coarse module, we generate a base parametric model from large-scale RGB-D images, which is able to predict accurate rough 3D face models in different genders, ages, etc. Then in the fine module, a conditional StyleGAN architecture trained with high-fidelity scan models is introduced to enrich elaborate facial geometric and texture details. Note that different from previous methods, our base and detailed modules are both changeable, which enables an innovative application of adjusting both the basic attributes and the facial details of 3D face models. Furthermore, we propose a single-image fitting framework based on differentiable rendering. Rich experiments show that our method outperforms the state-of-the-art methods.

results Fig.1 Single-image fitting results using FaceVerse model.

FaceVerse PCA model and pre-trained checkpoints

Please download the zip file of version 0 or version 1 (recommended) and unzip it in the ./data folder.

FaceVerse version 0 [download]: paper version.

v0

Fig.2 Single-image reconstruction results of version 0 (base model, detail model and expression refined final model).

FaceVerse version 1 [download]:

  • Refine the shape of the base PCA model: symmetrical and more detailed.

  • Remove the points inside the mouth.

  • Refine the expression PCA components.

v1

Fig.3 Single-image reconstruction results of version 1 (base model, detail model and expression refined final model).

FaceVerse version 2 [download] (only the PCA base model for video tracking, please use version 1 for image fitting):

  • Fit the expression components to the 52 blendshapes defined by Apple. Please check 'exp_name_list' in faceverse_simple_v2.npy for the mapping relation.

  • Provide a simplification option (normal with 28632 vertices, simplified with 6335 vertices): you can use the selected points of FaceVerse v2 by:

python tracking_online.py  --version 2 --use_simplification
python tracking_offline.py --input example/videos/test.mp4 --res_folder example/video_results --version 2 --use_simplification
  • Refine the shape of the base PCA model: orthogonalization.

Fig.4 Real-time online tracking results (30 fps) of version 2. The real-time version is accelerated by point-base rendering using cuda (this version has not been released).

Requirements

  • Python 3.9
  • PyTorch 1.11.0
  • torchvision 0.11.1
  • PyTorch3D 0.6.0
  • Cuda 11.3
  • ONNX Runtime
  • OpenCV
  • Numpy
  • tqdm
  • ninja

You need to compile the ops provided by stylegan2-pytorch using ninja:

cd third_libs/stylegan_ops
python3 setup.py install

Single-image fitting

Reconstructing a 3D face from a single image. There are three processes: (a) reconstructed by PCA model; (b) refined by the detailed generator; (c) refined by the expression generator.

An example input with a image folder (sampled from the FFHQ dataset):

python3 fit_images.py --version 1 --input example/images --res_folder example/image_results --save_ply

Note: the detailed refinement is based on differentiable rendering, which is quite time-consuming (over 10 minutes).

Video-based tracking using our PCA base model

offline_tracking

Offline tracking input with a video (our code will crop the face region using the first frame, --use_simplification can be only used for version >= 2):

python tracking_offline.py --input example/videos/test.mp4 --res_folder example/video_results --version 2

Online tracking using your PC camera (our code will crop the face region using the first frame, --use_simplification can be only used for version >= 2):

python tracking_online.py  --version 2

online_tracking

Note: the tracking is based on differentiable rendering and only has 2 fps.

Citation

If you use this dataset for your research, please consider citing:

@InProceedings{wang2022faceverse,
title={FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset},
author={Wang, Lizhen and Chen, Zhiyua and Yu, Tao and Ma, Chenguang and Li, Liang and Liu, Yebin},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR2022)},
month={June},
year={2022},
}

Contact

Acknowledgement & License

The code is partially borrowed from 3DMM-Fitting-Pytorch, stylegan2-pytorch and OpenSeeFace. And many thanks to the volunteers participated in data collection. Our License

Owner
Lizhen Wang
Lizhen Wang
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022