LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

Overview

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

Where we are ?

12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了

ckpt__448_epoch_25.pth mIoU Overall IoU [email protected]
Refcoco val 70.743 71.671 82.26
Refcoco testA 73.679 74.772 -
Refcoco testB 67.582 67.339 -

12.29 45epoch的结果又上升了大约1%

ckpt__448_epoch_45.pth mIoU Overall IoU
Refcoco val 71.949 72.246
Refcoco testA 74.533 75.467
Refcoco testB 67.849 68.123

the pretrain model will be released soon

对原论文的复现

论文链接: https://arxiv.org/abs/2112.02244

官方实现: https://github.com/yz93/LAVT-RIS

Architecture

Features

  • 将不同模态feature的fusion提前到Image Encoder阶段

  • 思路上对这两篇论文有很多借鉴

    • Vision-Language Transformer and Query Generation for Referring Segmentation

    • Locate then Segment: A Strong Pipeline for Referring Image Segmentation

  • 采用了比较新的主干网络 Swin-Transformer

Usage

详细参数设置可以见args.py

for training

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 main.py --batch_size 2 --cfg_file configs/swin_base_patch4_window7_224.yaml --size 448

for evaluation

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --nproc_per_node 4 --master_port 23458 main.py --size 448 --batch_size 1 --resume --eval --type val --eval_mode cat --pretrain ckpt_448_epoch_20.pth --cfg_file configs/swin_base_patch4_window7_224.yaml

*.pth 都放在./checkpoint

for resume from checkpoint

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12346 main.py --batch_size 2 --cfg_file configs/swin_base_patch4_window7_224.yaml --size 448 --resume --pretrain ckpt_448_epoch_10.pth

for dataset preparation

please get details from ./data/readme.md

Need to be finished

由于我在复现的时候,官方的code还没有出来,所以一些细节上的设置可能和官方code不同

  • Swin Transformer 我选择的是 swin_base_patch4_window12_384_22k.pth,具体代码可以参考官方代码 https://github.com/microsoft/Swin-Transformer/blob/main/get_started.md 原论文中的图像resize的尺寸是480*480,可是我目前基于官方的代码若想调到这个尺寸,总是会报错,查了一下觉得可能用object detection 的swin transformer的code比较好

    12.27 这个问题目前也已经得到了较好的解决,目前训练用的是 swin_base_patch4_window7_224_22k.pth, 输入图片的尺寸调整到448*448

    解决方案可以参考:

    https://github.com/microsoft/Swin-Transformer/issues/155

  • 原论文中使用的lr_scheduler是polynomial learning rate decay, 没有给出具体的参数手动设置了一下

    12.21 目前来看感觉自己设置的不是很好

    12.27 调整了一下设置,初始学习率的设置真的很重要,特别是根据batch_size 去scale你的 inital learning rate

  • 原论文中的batch_size=32,基于自己的实验我猜想应该是用了8块GPU,每一块的batch_size=4, 由于我第一次写DDP code,训练时发现,程序总是会在RANK0上给其余RANK开辟类似共享显存的东西,导致我无法做到原论文相同的配置,需要改进

  • 仔细观察Refcoco的数据集,会发现一个target会对应好几个sentence,training时我设计的是随机选一个句子,evaluate时感觉应该要把所有句子用上会更好,关于这一点我想了两种evaluate的方法

    目前eval 只能支持 batch_size=1

    • 将所有句子concatenate成为一个句子,送入BERT,Input 形式上就是(Image,cat(sent_1,sent_2,sent_3)) => model => pred

    实验发现这种eval_mode 下的mean IOU 会好不少, overall_IOU 也会好一点

    • 对同一张图片处理多次处理,然后将结果进行平均,Input 形式上就是 ((Image,sent_1),(Image,sent_2),(Image,sent_3)) => model => average(pred_1,pred_2,pred_3)

Visualization

详细见inference.ipynb

input sentences

  1. right girl
  2. closest girl on right

results

Failure cases study

AnalysisFailure.ipynb 提供了一个研究model不work的途径,主要是筛选了IoU < 0.5的case,并在这些case中着重查看了一下IoU < 0.10.4 < IoU < 0.5 的例子

目前我只看了一些有限的failure cases,做了如下总结

  • 模型对于similar,dense object在language guide下定位不精确
  • 模型对于language的理解不分主次
  • refcoco本身标记的一些问题
Owner
zichengsaber
CVer
zichengsaber
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022