[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

Related tags

Deep LearningDAB-DETR
Overview

DAB-DETR

This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR.

Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, Lei Zhang

News

[2022/4/14] We release the .pptx file of our DETR-like models comparison figure for those who want to draw model arch figures in paper.
[2022/4/12] We fix a bug in the file datasets/coco_eval.py. The parameter useCats of CocoEvaluator should be True by default.
[2022/4/9] Our code is available!
[2022/3/9] We build a repo Awesome Detection Transformer to present papers about transformer for detection and segmenttion. Welcome to your attention!
[2022/3/8] Our new work DINO set a new record of 63.3AP on the MS-COCO leader board.
[2022/3/8] Our new work DN-DETR has been accpted by CVPR 2022!
[2022/1/21] Our work has been accepted to ICLR 2022.

Abstract

We present in this paper a novel query formulation using dynamic anchor boxes for DETR (DEtection TRansformer) and offer a deeper understanding of the role of queries in DETR. This new formulation directly uses box coordinates as queries in Transformer decoders and dynamically updates them layer-by-layer. Using box coordinates not only helps using explicit positional priors to improve the query-to-feature similarity and eliminate the slow training convergence issue in DETR, but also allows us to modulate the positional attention map using the box width and height information. Such a design makes it clear that queries in DETR can be implemented as performing soft ROI pooling layer-by-layer in a cascade manner. As a result, it leads to the best performance on MS-COCO benchmark among the DETR-like detection models under the same setting, e.g., AP 45.7% using ResNet50-DC5 as backbone trained in 50 epochs. We also conducted extensive experiments to confirm our analysis and verify the effectiveness of our methods.

Model

arch

Model Zoo

We provide our models with R50 backbone, including both DAB-DETR and DAB-Deformable-DETR (See Appendix C of our paper for more details).

name backbone box AP Log/Config/Checkpoint Where in Our Paper
0 DAB-DETR-R50 R50 42.2 Google Drive | Tsinghua Cloud Table 2
1 DAB-DETR-R50(3 pat)1 R50 42.6 Google Drive | Tsinghua Cloud Table 2
2 DAB-DETR-R50-DC5 R50 44.5 Google Drive | Tsinghua Cloud Table 2
3 DAB-DETR-R50-DC5-fixxy2 R50 44.7 Google Drive | Tsinghua Cloud Table 8. Appendix H.
4 DAB-DETR-R50-DC5(3 pat) R50 45.7 Google Drive | Tsinghua Cloud Table 2
5 DAB-Deformbale-DETR
(Deformbale Encoder Only)3
R50 46.9 Baseline for DN-DETR
6 DAB-Deformable-DETR-R504 R50 48.1 Google Drive | Tsinghua Cloud Extend Results for Table 5,
Appendix C.

Notes:

  • 1: The models with marks (3 pat) are trained with multiple pattern embeds (refer to Anchor DETR or our paper for more details.).
  • 2: The term "fixxy" means we use random initialization of anchors and do not update their parameters during training (See Appendix H of our paper for more details).
  • 3: The DAB-Deformbale-DETR(Deformbale Encoder Only) is a multiscale version of our DAB-DETR. See DN-DETR for more details.
  • 4: The result here is better than the number in our paper, as we use different losses coefficients during training. Refer to our config file for more details.

Usage

Installation

We use the great DETR project as our codebase, hence no extra dependency is needed for our DAB-DETR. For the DAB-Deformable-DETR, you need to compile the deformable attention operator manually.

We test our models under python=3.7.3,pytorch=1.9.0,cuda=11.1. Other versions might be available as well.

  1. Clone this repo
git clone https://github.com/IDEA-opensource/DAB-DETR.git
cd DAB-DETR
  1. Install Pytorch and torchvision

Follow the instrction on https://pytorch.org/get-started/locally/.

# an example:
conda install -c pytorch pytorch torchvision
  1. Install other needed packages
pip install -r requirements.txt
  1. Compiling CUDA operators
cd models/dab_deformable_detr/ops
python setup.py build install
# unit test (should see all checking is True)
python test.py
cd ../../..

Data

Please download COCO 2017 dataset and organize them as following:

COCODIR/
  ├── train2017/
  ├── val2017/
  └── annotations/
  	├── instances_train2017.json
  	└── instances_val2017.json

Run

We use the standard DAB-DETR-R50 and DAB-Deformable-DETR-R50 as examples for training and evalulation.

Eval our pretrianed models

Download our DAB-DETR-R50 model checkpoint from this link and perform the command below. You can expect to get the final AP about 42.2.

For our DAB-Deformable-DETR (download here), the final AP expected is 48.1.

# for dab_detr: 42.2 AP
python main.py -m dab_detr \
  --output_dir logs/DABDETR/R50 \
  --batch_size 1 \
  --coco_path /path/to/your/COCODIR \ # replace the args to your COCO path
  --resume /path/to/our/checkpoint \ # replace the args to your checkpoint path
  --eval

# for dab_deformable_detr: 48.1 AP
python main.py -m dab_deformable_detr \
  --output_dir logs/dab_deformable_detr/R50 \
  --batch_size 2 \
  --coco_path /path/to/your/COCODIR \ # replace the args to your COCO path
  --resume /path/to/our/checkpoint \ # replace the args to your checkpoint path
  --transformer_activation relu \
  --eval

Training your own models

Similarly, you can also train our model on a single process:

# for dab_detr
python main.py -m dab_detr \
  --output_dir logs/DABDETR/R50 \
  --batch_size 1 \
  --epochs 50 \
  --lr_drop 40 \
  --coco_path /path/to/your/COCODIR  # replace the args to your COCO path

Distributed Run

However, as the training is time consuming, we suggest to train the model on multi-device.

If you plan to train the models on a cluster with Slurm, here is an example command for training:

# for dab_detr: 42.2 AP
python run_with_submitit.py \
  --timeout 3000 \
  --job_name DABDETR \
  --coco_path /path/to/your/COCODIR \
  -m dab_detr \
  --job_dir logs/DABDETR/R50_%j \
  --batch_size 2 \
  --ngpus 8 \
  --nodes 1 \
  --epochs 50 \
  --lr_drop 40 

# for dab_deformable_detr: 48.1 AP
python run_with_submitit.py \
  --timeout 3000 \
  --job_name dab_deformable_detr \
  --coco_path /path/to/your/COCODIR \
  -m dab_deformable_detr \
  --transformer_activation relu \
  --job_dir logs/dab_deformable_detr/R50_%j \
  --batch_size 2 \
  --ngpus 8 \
  --nodes 1 \
  --epochs 50 \
  --lr_drop 40 

The final AP should be similar to ours. (42.2 for DAB-DETR and 48.1 for DAB-Deformable-DETR). Our configs and logs(see the model_zoo) could be used as references as well.

Notes:

  • The results are sensitive to the batch size. We use 16(2 images each GPU x 8 GPUs) by default.

Or run with multi-processes on a single node:

# for dab_detr: 42.2 AP
python -m torch.distributed.launch --nproc_per_node=8 \
  main.py -m dab_detr \
  --output_dir logs/DABDETR/R50 \
  --batch_size 2 \
  --epochs 50 \
  --lr_drop 40 \
  --coco_path /path/to/your/COCODIR

# for dab_deformable_detr: 48.1 AP
python -m torch.distributed.launch --nproc_per_node=8 \
  main.py -m dab_deformable_detr \
  --output_dir logs/dab_deformable_detr/R50 \
  --batch_size 2 \
  --epochs 50 \
  --lr_drop 40 \
  --transformer_activation relu \
  --coco_path /path/to/your/COCODIR

Detailed Model

arch

Comparison of DETR-like Models

The source file can be found here.

comparison

Links

DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection.
Hao Zhang*, Feng Li*, Shilong Liu*, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, Heung-Yeung Shum
arxiv 2022.
[paper] [code]

DN-DETR: Accelerate DETR Training by Introducing Query DeNoising.
Feng Li*, Hao Zhang*, Shilong Liu, Jian Guo, Lionel M. Ni, Lei Zhang.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
[paper] [code]

License

DAB-DETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Copyright (c) IDEA. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Citation

@inproceedings{
  liu2022dabdetr,
  title={{DAB}-{DETR}: Dynamic Anchor Boxes are Better Queries for {DETR}},
  author={Shilong Liu and Feng Li and Hao Zhang and Xiao Yang and Xianbiao Qi and Hang Su and Jun Zhu and Lei Zhang},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=oMI9PjOb9Jl}
}
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022