Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Overview

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization

This is an official implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" (ACMMM 2021 Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization

Seogkyu Jeon, Kibeom Hong, Pilhyeon Lee, Jewook Lee, Hyeran Byun (Yonsei Univ.)

Paper : https://arxiv.org/abs/2108.08596

Abstract: Domain generalization aims to enhance the model robustness against domain shift without accessing the target domain. Since the available source domains for training are limited, recent approaches focus on generating samples of novel domains. Nevertheless, they either struggle with the optimization problem when synthesizing abundant domains or cause the distortion of class semantics. To these ends, we propose a novel domain generalization framework where feature statistics are utilized for stylizing original features to ones with novel domain properties. To preserve class information during stylization, we first decompose features into high and low frequency components. Afterward, we stylize the low frequency components with the novel domain styles sampled from the manipulated statistics, while preserving the shape cues in high frequency ones. As the final step, we re-merge both the components to synthesize novel domain features. To enhance domain robustness, we utilize the stylized features to maintain the model consistency in terms of features as well as outputs. We achieve the feature consistency with the proposed domain-aware supervised contrastive loss, which ensures domain invariance while increasing class discriminability. Experimental results demonstrate the effectiveness of the proposed feature stylization and the domain-aware contrastive loss. Through quantitative comparisons, we verify the lead of our method upon existing state-of-the-art methods on two benchmarks, PACS and Office-Home.

Prerequisites

* The code is built upon popular DG pytorch toolbox DASSL.

Dependency

  • Python 3.6
  • CUDA
  • Pytorch 1.7
  • Check the requirements.txt
pip install -r requirements.txt

Installation

# Clone this repo
git clone https://github.com/jone1222/DG-Feature-Stylization
cd DG-Feature-Stylization/

# Create a conda environment
conda create -n featstyle python=3.7

# Activate the environment
conda activate featstyle

# Install dependencies
pip install -r requirements.txt

# Install torch (version >= 1.7.1) and torchvision
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

# Install this library (no need to re-build if the source code is modified)
python setup.py develop

Datasets

Download links of datasets are available in DATASETS.md.

Please ensure that the downloaded datasets are located under the same root directory as follows:

dataset_root/
    pacs/
        images/
        splits/
    office_home_dg/
        art/
        clipart/
        product/
        real_world/

Training

PACS
bash train_pacs.sh

Inference

PACS

The model weights pre-trained on PACS can be downloaded here.

bash test_pacs.sh

Citation

If you find this work useful for your research, please cite:

@inproceedings{jeon2021stylizationDG,
  title={Feature Stylization and Domain-aware Contrastive Learning for Domain Generalization},
  author={Seogkyu Jeon and Kibeom Hong and Pilhyeon Lee and Jewook Lee and Hyeran Byun},
  booktitle={The 29th ACM International Conference on Multimedia},
  year={2021},
}

Contact

For any comments or questions, please contact us via this email: [email protected]

A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022