Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

Overview

FC-DenseNet-Tensorflow

This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). The aim of the repository is to break down the working modules of the network, as presented in the paper, for ease of understanding. To facilitate this, the network is defined in a class, with functions for each block in the network. This promotes a modular view, and an understanding of what each component does individually. I tried to make the model code more readable, and this is the main aim of the this repository.

Network Architecture

Submodules

The "submodules" that build up the Tiramisu are explained here. Note: The graphics are just a redrawing of the ones from the original paper.

The Conv Layer:

The "conv layer" is the most atomic unit of the FC-DenseNet, it is the building block of all other modules. The following image shows the conv layer:

In code, it is implemented as:
def conv_layer(self, x, training, filters, name):
    with tf.name_scope(name):
        x = self.batch_norm(x, training, name=name+'_bn')
        x = tf.nn.relu(x, name=name+'_relu')
        x = tf.layers.conv2d(x,
                             filters=filters,
                             kernel_size=[3, 3],
                             strides=[1, 1],
                             padding='SAME',
                             dilation_rate=[1, 1],
                             activation=None,
                             kernel_initializer=tf.contrib.layers.xavier_initializer(),
                             name=name+'_conv3x3')
        x = tf.layers.dropout(x, rate=0.2, training=training, name=name+'_dropout')

As can be seen, each "convolutional" layer is actually a 4 step procedure of batch normalization -> Relu -> 2D-Convolution -> Dropout.

The Dense Block

The dense block is a sequence of convolutions followed by concatenations. The output of a conv layer is concated depth wise with its input, this forms the input to the next layer, and is repeated for all layers in a dense block. For the final output i.e., the output of the Dense Block, all the outputs of each conv layer in the block are concated, as shown:

In code, it is implemented as:

def dense_block(self, x, training, block_nb, name):
    dense_out = []
    with tf.name_scope(name):
        for i in range(self.layers_per_block[block_nb]):
            conv = self.conv_layer(x, training, self.growth_k, name=name+'_layer_'+str(i))
            x = tf.concat([conv, x], axis=3)
            dense_out.append(conv)

        x = tf.concat(dense_out, axis=3)

    return x

How to Run

To run the network on your own dataset, do the following:

  1. Clone this repository.
  2. Open up your terminal and navigate to the cloned repository
  3. Type in the following:
python main.py --mode=train --train_data=path/to/train/data --val_data=path/to/validation/data \
--ckpt=path/to/save/checkpoint/model.ckpt --layers_per_block=4,5,7,10,12,15 \
--batch_size=8 --epochs=10 --growth_k=16 --num_classes=2 --learning_rate=0.001

The "layers_per_block" argument is only specified for the downsample path, upto the final bottleneck dense block, the upsample path is then automatically built by mirroring the downsample path.

Run with trained checkpoint

To run the code with a trained checkpoint file on images, use the infer mode in in the command line options, like so:

python main.py --mode=infer --infer_data=path/to/infer/data --batch_size=4 \
--ckpt=models/model.ckpt-20 --output_folder=outputs

Tests

The python files ending with "*_test.py" are unit test files, if you make changes or have just cloned the repo, it is a good idea to run them once in your favorite Python IDE, they should let you know if your changes break anything. Currently, the test coverage is not that high, I plan to keep adding more in the future.

TODOs:

  1. Add some more functionality in the code.
  2. Add more detail into this readme.
  3. Save model graph.
  4. Rework command line arguments.
  5. Update with some examples of performance once trained.
  6. Increase test coverage.
  7. Save loss summaries for Tensorboard.
Owner
Hasnain Raza
Hasnain Raza
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022