PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

Related tags

Deep Learningpytorch
Overview

PyTorch-LIT

PyPI version

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

With the rapid growth of deep learning research, models are becoming increasingly complex in terms of parameters and complexity, making it difficult to run the models on currently available end devices. For example, GPT-J with 6B parameters only needs 24 GB of RAM in full-precision mode to be ready for execution, which may be impossible in most systems; even a powerful GPU like the RTX 2060 with 6 GB of memory can't even contain GPT-J in half-precision mode, making direct inference impossible.

To address this issue when training large models, libraries such as DeepSpeed use offload techniques (e.g., ZeRO) to handle the parameters and make training possible by dividing the weights between devices. In contrast, there is no direct library/framework available for inference.

PyTorch-LIT allows the inference of large models by loading weights as needed from secondary specified memory, which could be disk, CPU, or GPU, allowing the inference of models that do not even fit in the system's main memory simply by trading off time.

Quick Start

  1. Install the library
pip install pytorch-lit
  1. You have to save the model's weight in a way that toolkit can use
from pytorch_lit.export import prepare_params

weights = {} # your model's parameters (state_dict)
# change the directory to save your model and specify data-type
prepare_params(weights, ".models/my-model", dtype="float32")
  1. After preparing the weights, you can infer your model
from pytorch_lit import LitModule

# pass your model construction as a closure, 
# specify weights path and inference device 
model = LitModule.from_params(".models/my-model",
                                  lambda: MyModel(),
                                  device="cuda")
result = model(*arg, **kwargs)
  1. Have fun enjoying the inference of the large model on a lower memory device:)

Examples

The repo's examples directory contains examples. There are currently two examples of GPT-J, one for text generation and the other for extracting hidden states as feature representations.

Development

This is a work in progress that will require further development before it can be considered a stable inference toolkit. Here is a list of potential future developments:

  • Caching and batch loading as many weights as memory allows, with weights being replaced in parallel with future ones (through the order of the execution graph)
  • C++ extension for PyTorch jit, so the solution applies to the majority of production end devices
  • Add functions to make it easier to export large models to onnx or trace with jit
  • Use better and faster format than numpy memmap

Contributions are welcome; to discuss your idea further, open an issue with the discussion tag. Finally, you can submit a pull request to merge your fork.

How does it work?

This implementation was made possible primarily by two ideas:

  • The first issue was that PyTorch initialized the model object's parameters when constructing it, causing the construction to fail when the model couldn't fit into memory. To address this, we proposed temporarily hijacking PyTorch's Parameter class's __new__ method during model construction, allowing us to replace the parameter's tensor with a view from a shared global tensor immediately after creation. By doing so, all parameters use the same shared big tensor as their primary storage, allowing the model to be built and tested with inputs to follow and trace the execution graph.
  • The second issue was the large size of model parameters; in the preparation step, we built a numpy memmap(np.memmap) and saved metadata that provided us with the location of each key in the memmap. This allowed us to read parameters from the memmap as needed. Following that, we use the PyTorch hooks (forward and pre_forward) to load and unload a module's parameters before and after execution.

Citation

Please cite PyTorch-LIT if it helps your research. You can use the following BibTeX entry:

@misc{pytorch_lit,
	title = {PyTorch-LIT},
	author = {Rezaei, Amin},
	howpublished = {\url{github.com/AminRezaei0x443/PyTorch-LIT}},
	year = {2021}
}
You might also like...
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

 WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

this is a lite easy to use virtual keyboard project for anyone to use
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

Code & Models for 3DETR - an End-to-end transformer model for 3D object detection
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx] An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Comments
  • RuntimeError : OrderdDict mutated during iteration.

    RuntimeError : OrderdDict mutated during iteration.

    Hi, there are new problems. When the model parameters forward, raise a RuntimeError : OrderdDict mutated during iteration. detail as below: Traceback (most recent call last): File "nlp/rct-FPM-rhino/big_model/predict.py", line 24, in result = model(**tokens) File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/inference.py", line 34, in call return self.forward(*args, **kwargs) File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/inference.py", line 31, in forward return self.module(*args, **kwargs) File "miniconda3/envs/rhino/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1057, in _call_impl for hook in itertools.chain( RuntimeError: OrderedDict mutated during iteration

    enviroments:

    GPU:NVIDIA GeForce 3090 CUDA version 11.4 pip list: certifi 2021.10.8 charset-normalizer 2.0.8 click 8.0.3 filelock 3.4.0 huggingface-hub 0.2.0 idna 3.3 joblib 1.1.0 numpy 1.21.4 packaging 21.3 Pillow 8.4.0 pip 21.2.4 pyparsing 3.0.6 pytorch-lit 0.1.7 PyYAML 6.0 regex 2021.11.10 requests 2.26.0 sacremoses 0.0.46 setuptools 58.0.4 six 1.16.0 tokenizer 3.3.2 tokenizers 0.10.3 torch 1.9.1+cu111 torchaudio 0.8.1 torchvision 0.9.1+cu111 tqdm 4.62.3 transformers 4.12.5 typing_extensions 4.0.1 urllib3 1.26.7

    I think this problem caused by PyTorch hooks (forward and pre_forward) to load and unload a module's parameters before and after execution, when load and unload the parameters,the OrderedDict was be mutated.

    opened by changleilei 9
  • TypeError: <lambda>() missing 1 required positional argument: 'k'

    TypeError: () missing 1 required positional argument: 'k'

    Hello, when i use pytorch-lit prepare a model, got a TypeError as title. The detail as blow:

    File "nlp/rct-FPM-rhino/big_model/prepare_model.py", line 16, in prepare_model prepare_params(model, args.save_path, dtype='float32') File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/export.py", line 19, in prepare_params _params_to_memmap(parameters, path.join(save_dir, "model.bin"), File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/export.py", line 52, in _params_to_memmap param = get_param(k) File "miniconda3/envs/rhino/lib/python3.8/site-packages/pytorch_lit/export.py", line 50, in get_param = lambda key: params"get" TypeError: () missing 1 required positional argument: 'k'

    package list:

    certifi 2021.10.8 numpy 1.21.4 pip 21.2.4 pytorch-lit 0.1.6 setuptools 58.0.4 torch 1.10.0 tqdm 4.62.3 typing_extensions 4.0.1 wheel 0.37.0

    model: gpt-j-6B

    Have any suggesstion? Thanks.

    opened by changleilei 1
  • gpt-j generation speed very low

    gpt-j generation speed very low

    The output of gpt-j is very slow, for a 200 output token generation it takes about 20 minutes, for 2048 it takes more than an hour, this significantly limits any experimentation with the model.

    I checked Gpu utilization during inference which is about 1 percent or 4 percent, and gpu memory usage is below 4GB usage, my system has 8GB Gpu memory, if full Gpu is utilized it may be significantly increase the inference speed

    Are their simple hacks to speedup inference time ?

    opened by usama-ahmedkhan 3
  • Weights file format is changed, function partial_loader fails

    Weights file format is changed, function partial_loader fails

    Hi, thanks for your effort for making it easy to load and do inference from large models. I tried your code on a gpt-j model with different model file format, the weight files of the model are in several .pt files not like a single .bin file which your code function partial_loader() expects, does the code work with multiple weight file ? , how can i change it.

    opened by usama-ahmedkhan 4
Releases(0.1.7)
Owner
Amin Rezaei
Computer Science BSc, Neural Networks Enthusiast
Amin Rezaei
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022