Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

Related tags

Deep Learning3detr
Overview

3DETR: An End-to-End Transformer Model for 3D Object Detection

PyTorch implementation and models for 3DETR.

3DETR (3D DEtection TRansformer) is a simpler alternative to complex hand-crafted 3D detection pipelines. It does not rely on 3D backbones such as PointNet++ and uses few 3D-specific operators. 3DETR obtains comparable or better performance than 3D detection methods such as VoteNet. The encoder can also be used for other 3D tasks such as shape classification. More details in the paper "An End-to-End Transformer Model for 3D Object Detection".

[website] [arXiv] [bibtex]

Code description. Our code is based on prior work such as DETR and VoteNet and we aim for simplicity in our implementation. We hope it can ease research in 3D detection.

3DETR Approach Decoder Detections

Pretrained Models

We provide the pretrained model weights and the corresponding metrics on the val set (per class APs, Recalls). We provide a Python script utils/download_weights.py to easily download the weights/metrics files.

Arch Dataset Epochs AP25 AP50 Model weights Eval metrics
3DETR-m SUN RGB-D 1080 59.1 30.3 weights metrics
3DETR SUN RGB-D 1080 58.0 30.3 weights metrics
3DETR-m ScanNet 1080 65.0 47.0 weights metrics
3DETR ScanNet 1080 62.1 37.9 weights metrics

Model Zoo

For convenience, we provide model weights for 3DETR trained for different number of epochs.

Arch Dataset Epochs AP25 AP50 Model weights Eval metrics
3DETR-m SUN RGB-D 90 51.0 22.0 weights metrics
3DETR-m SUN RGB-D 180 55.6 27.5 weights metrics
3DETR-m SUN RGB-D 360 58.2 30.6 weights metrics
3DETR-m SUN RGB-D 720 58.1 30.4 weights metrics
3DETR SUN RGB-D 90 43.7 16.2 weights metrics
3DETR SUN RGB-D 180 52.1 25.8 weights metrics
3DETR SUN RGB-D 360 56.3 29.6 weights metrics
3DETR SUN RGB-D 720 56.0 27.8 weights metrics
3DETR-m ScanNet 90 47.1 19.5 weights metrics
3DETR-m ScanNet 180 58.7 33.6 weights metrics
3DETR-m ScanNet 360 62.4 37.7 weights metrics
3DETR-m ScanNet 720 63.7 44.5 weights metrics
3DETR ScanNet 90 42.8 15.3 weights metrics
3DETR ScanNet 180 54.5 28.8 weights metrics
3DETR ScanNet 360 59.0 35.4 weights metrics
3DETR ScanNet 720 61.1 40.2 weights metrics

Running 3DETR

Installation

Our code is tested with PyTorch 1.4.0, CUDA 10.2 and Python 3.6. It may work with other versions.

You will need to install pointnet2 layers by running

cd third_party/pointnet2 && python setup.py install

You will also need Python dependencies (either conda install or pip install)

matplotlib
opencv-python
plyfile
'trimesh>=2.35.39,<2.35.40'
'networkx>=2.2,<2.3'
scipy

Some users have experienced issues using CUDA 11 or higher. Please try using CUDA 10.2 if you run into CUDA issues.

Optionally, you can install a Cythonized implementation of gIOU for faster training.

conda install cython
cd utils && python cython_compile.py build_ext --inplace

Benchmarking

Dataset preparation

We follow the VoteNet codebase for preprocessing our data. The instructions for preprocessing SUN RGB-D are [here] and ScanNet are [here].

You can edit the dataset paths in datasets/sunrgbd.py and datasets/scannet.py or choose to specify at runtime.

Testing

Once you have the datasets prepared, you can test pretrained models as

python main.py --dataset_name <dataset_name> --nqueries <number of queries> --test_ckpt <path_to_checkpoint> --test_only [--enc_type masked]

We use 128 queries for the SUN RGB-D dataset and 256 queries for the ScanNet dataset. You will need to add the flag --enc_type masked when testing the 3DETR-m checkpoints. Please note that the testing process is stochastic (due to randomness in point cloud sampling and sampling the queries) and so results can vary within 1% AP25 across runs. This stochastic nature of the inference process is also common for methods such as VoteNet.

If you have not edited the dataset paths for the files in the datasets folder, you can pass the path to the datasets using the --dataset_root_dir flag.

Training

The model can be simply trained by running main.py.

python main.py --dataset_name <dataset_name> --checkpoint_dir <path to store outputs>

To reproduce the results in the paper, we provide the arguments in the scripts folder. A variance of 1% AP25 across different training runs can be expected.

You can quickly verify your installation by training a 3DETR model for 90 epochs on ScanNet following the file scripts/scannet_quick.sh and compare it to the pretrained checkpoint from the Model Zoo.

License

The majority of 3DETR is licensed under the Apache 2.0 license as found in the LICENSE file, however portions of the project are available under separate license terms: licensing information for pointnet2 is available at https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/UNLICENSE

Contributing

We welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Citation

If you find this repository useful, please consider starring us and citing

@inproceedings{misra2021-3detr,
    title={{An End-to-End Transformer Model for 3D Object Detection}},
    author={Misra, Ishan and Girdhar, Rohit and Joulin, Armand},
    booktitle={{ICCV}},
    year={2021},
}
Owner
Facebook Research
Facebook Research
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022