Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Overview

Light Field Networks

Project Page | Paper | Data | Pretrained Models

Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Durand
MIT, *denotes equal contribution

This is the official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering".

lfns_video

Get started

You can set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate siren

High-Level structure

The code is organized as follows:

  • multiclass_dataio.py and dataio.py contain the dataio for mutliclass- and single-class experiments respectively.
  • models.py contains the code for light field networks.
  • training.py contains a generic training routine.
  • ./experiment_scripts/ contains scripts to reproduce experiments in the paper.

Reproducing experiments

The directory experiment_scripts contains one script per experiment in the paper.

train_single_class.py trains a model on classes in the Scene Representation Networks format, such as cars or chairs. Note that since these datasets have a resolution of 128, this model starts with a lower resolution (64) and then increases the resolution to 128 (see line 43 in the script).

train_nmr.py trains a model on the NMR dataset. An example call is:

python experiment_scripts/train_nmr.py --data_root=path_to_nmr_dataset
python experiment_scripts/train_single_class.py --data_root=path_to_single_class

To reconstruct test objects, use the scripts "rec_single_class.py" and "rec_nmr.py". In addition to the data root, you have to point these scripts to the checkpoint from the training run. Note that the rec_nmr.py script uses the viewlist under ./experiment_scripts/viewlists/src_dvr.txt to pick which views to reconstruct the objects from, while rec_single_class.py per default reconstructs from the view with index 64.

python experiment_scripts/rec_nmr.py --data_root=path_to_nmr_dataset --checkpoint=path_to_training_checkpoint
python experiment_scripts/rec_single_class.py --data_root=path_to_single_class_TEST_SET --checkpoint=path_to_training_checkpoint

Finally, you may test the models on the test set with the test.py script. This script is used for testing all the models. You have to pass it as a parameter which dataset you are reconstructing ("NMR" or no). For the NMR dataset, you need to pass the "viewlist" again to make sure that the model is not evaluated on the context view.

python experiment_scripts/test.py --data_root=path_to_nmr_dataset --dataset=NMR --checkpoint=path_to_rec_checkpoint
python experiment_scripts/test.py --data_root=path_to_single_class_TEST_SET --dataset=single --checkpoint=path_to_rec_checkpoint

To monitor progress, both the training and reconstruction scripts write tensorboard summaries into a "summaries" subdirectory in the logging_root.

Bells & whistles

This code has a bunch of options that were not discussed in the paper.

  • switch between a ReLU network and a SIREN to better fit high-frequency content with the flag --network (see the init of model.py for options).
  • switch between a hypernetwork, conditioning via concatenation, and low-rank concditioning with the flag --conditioning
  • there is an implementation of encoder-based inference in models.py (LFEncoder) which uses a ResNet18 with global conditioning to generate the latent codes z.

Data

We use two types of datasets: class-specific ones and multi-class ones.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

Misc

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2021lfns,
               author = {Sitzmann, Vincent
                         and Rezchikov, Semon
                         and Freeman, William T.
                         and Tenenbaum, Joshua B.
                         and Durand, Fredo},
               title = {Light Field Networks: Neural Scene Representations
                        with Single-Evaluation Rendering},
               booktitle = {Proc. NeurIPS},
               year={2021}
            }

Contact

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021