Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Overview

Light Field Networks

Project Page | Paper | Data | Pretrained Models

Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Durand
MIT, *denotes equal contribution

This is the official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering".

lfns_video

Get started

You can set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate siren

High-Level structure

The code is organized as follows:

  • multiclass_dataio.py and dataio.py contain the dataio for mutliclass- and single-class experiments respectively.
  • models.py contains the code for light field networks.
  • training.py contains a generic training routine.
  • ./experiment_scripts/ contains scripts to reproduce experiments in the paper.

Reproducing experiments

The directory experiment_scripts contains one script per experiment in the paper.

train_single_class.py trains a model on classes in the Scene Representation Networks format, such as cars or chairs. Note that since these datasets have a resolution of 128, this model starts with a lower resolution (64) and then increases the resolution to 128 (see line 43 in the script).

train_nmr.py trains a model on the NMR dataset. An example call is:

python experiment_scripts/train_nmr.py --data_root=path_to_nmr_dataset
python experiment_scripts/train_single_class.py --data_root=path_to_single_class

To reconstruct test objects, use the scripts "rec_single_class.py" and "rec_nmr.py". In addition to the data root, you have to point these scripts to the checkpoint from the training run. Note that the rec_nmr.py script uses the viewlist under ./experiment_scripts/viewlists/src_dvr.txt to pick which views to reconstruct the objects from, while rec_single_class.py per default reconstructs from the view with index 64.

python experiment_scripts/rec_nmr.py --data_root=path_to_nmr_dataset --checkpoint=path_to_training_checkpoint
python experiment_scripts/rec_single_class.py --data_root=path_to_single_class_TEST_SET --checkpoint=path_to_training_checkpoint

Finally, you may test the models on the test set with the test.py script. This script is used for testing all the models. You have to pass it as a parameter which dataset you are reconstructing ("NMR" or no). For the NMR dataset, you need to pass the "viewlist" again to make sure that the model is not evaluated on the context view.

python experiment_scripts/test.py --data_root=path_to_nmr_dataset --dataset=NMR --checkpoint=path_to_rec_checkpoint
python experiment_scripts/test.py --data_root=path_to_single_class_TEST_SET --dataset=single --checkpoint=path_to_rec_checkpoint

To monitor progress, both the training and reconstruction scripts write tensorboard summaries into a "summaries" subdirectory in the logging_root.

Bells & whistles

This code has a bunch of options that were not discussed in the paper.

  • switch between a ReLU network and a SIREN to better fit high-frequency content with the flag --network (see the init of model.py for options).
  • switch between a hypernetwork, conditioning via concatenation, and low-rank concditioning with the flag --conditioning
  • there is an implementation of encoder-based inference in models.py (LFEncoder) which uses a ResNet18 with global conditioning to generate the latent codes z.

Data

We use two types of datasets: class-specific ones and multi-class ones.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

Misc

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2021lfns,
               author = {Sitzmann, Vincent
                         and Rezchikov, Semon
                         and Freeman, William T.
                         and Tenenbaum, Joshua B.
                         and Durand, Fredo},
               title = {Light Field Networks: Neural Scene Representations
                        with Single-Evaluation Rendering},
               booktitle = {Proc. NeurIPS},
               year={2021}
            }

Contact

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022