Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Overview

Permutation Invariant Graph Generation via Score-Based Generative Modeling

This repo contains the official implementation for the paper

Permutation Invariant Graph Generation via Score-Based Generative Modeling (AISTATS 2020),

Authors: Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, Stefano Ermon


We propose a permutation invariant approach to modeling graphs, using the framework of score-based generative modeling. In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph (a.k.a, the score function). This permutation equivariant model of gradients implicitly defines a permutation invariant distribution for graphs. We can train this graph neural network with score matching and sample from it with annealed Langevin dynamics.

Dependencies

First, install PyTorch following the steps on its official website. The code has been tested over PyTorch 1.3.1 and 1.8.1.

Then run the following command to install the other dependencies.

pip install -r requirements.txt

To compile the ORCA program (see http://www.biolab.si/supp/orca/orca.html) for the evaluation step, run

cd evaluation/orca && g++ -O2 -std=c++11 -o orca orca.cpp

Running Experiments

Preparing Datasets

To generate the datasets, run

mkdir data
python gen_data.py # to generate the community-small dataset
python process_dataset.py # to generate the ego-small dataset

Configuring

The configurations are in the config/ directory, written in the YAML format. Refer to the comments in the given files for details.

The output files under the directory <exp_dir>/<exp_name> (set in the YAML configuration file) are

.
├── config.yaml  # a copy of the configuration 
├── fig  # reconstruction of the perturbed graphs
│   └── xxx.pdf
├── info.log  # logs (if running train.py)
├── models  
│   └── xxx.pth  # the saved PyTorch checkpoint
└── sample
    ├── fig
    │   └── xxx.pdf  # images of the generated graphs
    ├── info.log  # logs (if running sampling.py)
    └── sample_data
        └── xxx.pkl  # saved python list object of the generated graphs (networkx.Graph)

Training

train.py is the main executable file to run the whole pipeline (training, sampling, evaluation). Run python train.py -h to show its usage:

usage: train.py [-h] -c CONFIG_FILE [-l LOG_LEVEL] [-m COMMENT]

Running Experiments

optional arguments:
  -h, --help            show this help message and exit
  -c CONFIG_FILE, --config_file CONFIG_FILE
                        Path of config file
  -l LOG_LEVEL, --log_level LOG_LEVEL
                        Logging Level, one of: DEBUG, INFO, WARNING, ERROR, CRITICAL
  -m COMMENT, --comment COMMENT
                        A single line comment for the experiment

Examples:

python train.py -c config/train_ego_small.yaml  # to run on Ego-small dataset

python train.py -c config/train_com_small.yaml  # to run on Community-small dataset

Sampling

sample.py is for evaluating a saved model. The usage is the same as train.py. To set the location of the saved model, change model_save_dir in the YAML file, e.g. model_save_dir: 'exp/ego_small/edp-gnn_ego_small_xxx/models'.

Examples:

python sample.py -c config/sample_ego_small.yaml  # to run on Ego-small dataset
python sample.py -c config/sample_com_small.yaml  # to run on Community-small dataset
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022