Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Overview

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking
Hau Chu, Jia-Hong Lee, Yao-Chih Lee, Ching-Hsien Hsu, Jia-Da Li, Chu-Song Chen
2021 CVPR B-AMFG Workshop

Note: It's a project of AI^2 Lab. The code will be update in here while there is a new version.

Installation

  • Python 3.6+

  • Cuda 9.0

  • Cudnn 7

  • gcc 5 & g++ 5 (for Ubuntu 18.04)

$ sudo apt install gcc-5 g++-5
$ sudo ln -s /usr/bin/gcc-6 /usr/local/bin/gcc
$ sudo ln -s /usr/bin/g++-6 /usr/local/bin/g++
  • Conda Env
$ conda create -n venv python=3.6
$ conda activate venv
$ conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
$ pip install tensorflow_gpu==1.9.0
$ pip install -r requirements.txt
  • Git
$ sudo apt install git

Data preparation

Download datasets:

  1. Campus (http://campar.in.tum.de/Chair/MultiHumanPose)
  2. Shelf (http://campar.in.tum.de/Chair/MultiHumanPose)
  3. CMU Panoptic (https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox)

Dataset's camera_parameter.pickle download

The directory tree should look like below:

${ROOT}
    |-- CatchImage
        |-- CampusSeq1
        |   |-- Camera0
        |   |-- Camera1
        |   |-- Camera2
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Shelf
        |   |-- Camera0
        |   |-- ...
        |   |-- Camera4
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Panoptic
        |   |-- 160906_pizza1
            |   |-- 00_03 # hdImgs folder of 03 camera
            |   |-- 00_06 # hdImgs folder of 06 camera
            |   |-- ...
            |   |-- camera_parameter.pickle
            |   |-- hdPose_stage1_coco19
            |-- ...
    |-- src

Backend Models

Backend models, which is not our works, are released codes from others. We only did some small modifications to fit the format of our input/output. Put models in {ROOT}/src/backend

  1. YOLOv3
  2. HRNet

Run Codes

Demo

$cd src
python -W ignore testmodel.py --dataset CampusSeq1 # For Campus
python -W ignore testmodel.py --dataset Shelf # For Shelf
python -W ignore testmodel.py --dataset Panoptic # For Panoptic (sub-dataset can be modified in config)

Evaluation

$cd src
python -W ignore evalmodel.py --dataset CampusSeq1 
python -W ignore evalmodel.py --dataset Shelf

Campus PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 100.00 100.00 100.00 100.00
Torso 100.00 100.00 100.00 100.00
Upper arms 98.98 100.00 100.00 99.66
Lower arms 92.86 68.78 91.30 84.31
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 98.37 93.76 98.26 96.79

Shelf PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 94.98 100.00 91.30 95.43
Torso 100.00 100.00 100.00 100.00
Upper arms 100.00 100.00 96.27 98.76
Lower arms 98.21 77.03 96.27 90.50
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 99.14 95.41 97.64 97.39

Citation

@InProceedings{Chu_2021_CVPR,
    author    = {Chu, Hau and Lee, Jia-Hong and Lee, Yao-Chih and Hsu, Ching-Hsien and Li, Jia-Da and Chen, Chu-Song},
    title     = {Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {1472-1481}
}
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022