IsoGCN code for ICLR2021

Overview

IsoGCN

The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional Networks [arXiv].

isogcn

Please cite us as:

@inproceedings{
horie2021isometric,
title={Isometric Transformation Invariant and Equivariant Graph Convolutional Networks},
author={Masanobu Horie and Naoki Morita and Toshiaki Hishinuma and Yu Ihara and Naoto Mitsume},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=FX0vR39SJ5q}
}

General notice

If some of the following steps not working, please modify User settings section in the Makefile to fit with your environment.

Installation

You can either locally install locally or use Docker image. However, to generate an anisotropic nonlinear heat equation dataset, we recommend using Docker.

Local install

We are using poetry, thus first install it following the instruction on https://python-poetry.org/docs/ . Then, update the Makefile to PYTHON ?= 'poetry run python3' or explicitly specify the PYTHON environment variable on the execution of the make command.

For GPU environment,

PYTHON='poetry run python3' make poetry
poetry install
PYTHON='poetry run python3' make install_pyg_gpu

For CPU environment,

PYTHON='poetry run python3' make poetry
poetry install
PYTHON='poetry run python3' make install_pyg_cpu

, and set GPU_ID = -1 in the Makefile.

Also, optionally, please install FrontISTR and gmsh to generate an anisotropic nonlinear heat equation dataset (which are installed in the Docker image).

Docker image

Please download the docker image via https://savanna.ritc.jp/~horiem/isogcn_iclr2021/images/isogcn.tar, then place the image in the images directory. After that, plsease make in to login the docker befor perfroming all the following processes.

Differential operator dataset

Data generation

make differential_data

Training IsoGCN

make scalar2grad  # Scalar to gradient task
make scalar2grad  ADJ=5  # Scalar to gradient task with # hops = 5
make scalar2hessian  # Scalar to Hessian task
make grad2laplacian  # Gradient to Laplacian task
make grad2hessian  # Gradient to Hessian task

Training baseline models

make scalar2grad_baseline BASELINE_NAME=gcn  # BASELINE_NAME=[cluster_gcn, gcn, gcnii, gin, sgcn]

Similarly, one can perform baseline model trainings for other tasks.

Anisotropic nonlinear heat equation dataset

Run whole process with small data to check the process (Optional)

It generates a small dataset to simulate the whole process of data generation, preprocessing, training, and inference. This process requires either FrontISTR installed locally or Docker image.

make small_heat_nl_tensor_pipeline

Dataset download

The dataset containing finite element analysis results is generated from the ABC dataset using gmsh for meshing and FrontISTR for analysis.

Please download the dataset you need. (Note: To perform only training, you need only 'preprocessed' data.) The dataset can be downloaded via:

After download finished, please merge the split archives with:

cat train_50.tar.gz.parta* > train.tar.gz

, extract them with tar xvf *.tar.gz, then place them in the corresponding data/heat_nl_tensor/(raw|interim|preprocessed) directory.

Training IsoGCN

make heat_nl_tensor

Training baseline models

make heat_nl_tensor_baseline BASELINE_NAME=gcn  # BASELINE_NAME=[cluster_gcn, gcn, gcnii, gin, sgcn]

IsoGCN core implementation

The core implementation of the IsoGCN layer is separated in the library SiML and can be found here. Also, the code to generate IsoAMs is separated in the library Femio and can be found here.

License

Apache License 2.0.

Owner
horiem
A researcher, an engineer, and a Ph.D. student in machine learning + physical simulation.
horiem
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022