Winners of the Facebook Image Similarity Challenge

Overview



Example of original and manipulated image pair from the Challenge.

Image Similarity Challenge

Goal of the Competition

Competitors built models to help detect whether a given query image is derived from any of the images in a large reference set.

Content tracing is a crucial component on all social media platforms today, used for such tasks as flagging misinformation and manipulative advertising, preventing uploads of graphic violence, and enforcing copyright protections. But when dealing with the billions of new images generated every day on sites like Facebook, manual content moderation just doesn't scale. They depend on algorithms to help automatically flag or remove bad content.

This competition allowed participants to test their skills in building a key part of that content tracing system, and in so doing contribute to making social media more trustworthy and safe for the people who use it.

Example of manipulations of a source image.

A reference image is manipulated to produce new images.
In this challenge competitors built models to detect whether a given query image is derived from a reference set.


There were two tracks to this challenge:

  • For the Matching Track, competitors created models that directly detect whether a query image is derived from one of the images in a large corpus of reference images.
  • For the Descriptor Track, competitors generated useful vector representations of images (up to 256 dimensions). These descriptors are compared with Euclidean distance to detect whether a query image is derived from one of the images in a large corpus of reference images.

Winning Submissions

See below for links to winning submissions' arXiv papers and code.

Matching Track

Place Team or User Code Paper Score Summary of Model
1 VisionForce GitHub repository D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection 0.8329 A "data-driven and local-verification (D^2LV)" approach using pre-training on a set of basic and advanced image augmentations, and a global-local and local-global matching strategy for testing.
2 separate GitHub repository 2nd Place Solution to Facebook AI Image Similarity Challenge Matching Track 0.8291 A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.
3 imgFp GitHub repository 3rd Place: A Global and Local Dual Retrieval Solution to Facebook AI Image Similarity Challenge 0.7682 A global+local recall approach with EsViT for global recall and SIFT point features for local recall.

Descriptor Track

Place Team or User Code Paper Score Summary of Model
1 lyakaap GitHub repository Contrastive Learning with Large Memory Bank and Negative Embedding Subtraction for Accurate Copy Detection 0.6354 Uses an EfficientNet backbone trained with contrastive loss and cross-batch memory, and a training neighbor subtraction step in post-processing.
2 S-square GitHub repository Producing augmentation-invariant embeddings from real-life imagery 0.5905 Ensembles EfficientNet and NFNet backbones using an ArcFace loss function, and applies a sample normalization step in post-processing.
3 VisionForce GitHub repository Bag of Tricks and A Strong baseline for Image Copy Detection 0.5788 Uses a pretrained Barlow Twins model, yolov5 model to detect overlays, and a descriptor stretching step in post-processing.
Owner
DrivenData
Data science competitions for social good.
DrivenData
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022