Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Overview

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion

PWC PWC PWC

This repo provides the code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations. Incorporating relation prediction into the 1vsAll objective leads to a new self-supervised training objective for knowledge base completion (KBC), which brings significant performance improvement with 3-10 lines of code. Unleash the power of your KBC models with relation prediction objective!

Prepare Datasets

Download

Download datasets and put them under src_data. The folder should look like this TODO: tree command output

src_data/FB15K-237/train # Tab separated file
src_data/FB15K-237/valid # Tab separated file
src_data/FB15K-237/test # Tab separated file

As an option, you can download together UMLS, Nations, Kinship, FB15K-237, WN18RR from here and aristo-v4 from here. You can also download some datasets separately on WN18RR and FB15K-237.

Preprocessing

mkdir data/
python preprocess_datasets.py

Train the model

Use option score_rel to turn on the auxiliary objective of relation prediction. Use option w_rel to set the weight of the relation prediction objective.

For example, the following command trains a ComplEx model with relation prediction on FB15K-237

python main.py --dataset FB15K-237 --score_rel True --model ComplEx --rank 1000 --learning_rate 0.1 --batch_size 1000 --lmbda 0.05 --w_rel 4 --max_epochs 100

And the following command trains a ComplEx model without relation prediction on FB15K-237

python main.py --dataset FB15K-237 --score_rel False --model ComplEx --rank 1000 --learning_rate 0.1 --batch_size 1000 --lmbda 0.05 --w_rel 4 --max_epochs 100

Dependency

  • pytorch
  • wandb

Acknowledgement

This repo is based on the repo kbc, which provides efficient implementations of 1vsAll for ComplEx and CP. Our repo also includes implementations for other models: TransE, RESCAL, and TuckER.

BibTex

If you find this repo useful, please cite us

@inproceedings{
chen2021relation,
title={Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations},
author={Yihong Chen and Pasquale Minervini and Sebastian Riedel and Pontus Stenetorp},
booktitle={3rd Conference on Automated Knowledge Base Construction},
year={2021},
url={https://openreview.net/forum?id=Qa3uS3H7-Le}
}

License

This repo is CC-BY-NC licensed, as found in the LICENSE file.

Owner
Facebook Research
Facebook Research
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022