Hard cater examples from Hopper ICLR paper

Related tags

Deep Learningcater-h
Overview

CATER-h NEC Laboratories America, Inc.

Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf

(*Contact: [email protected])

CATER-h is the dataset proposed for the Video Reasoning task, specifically, the problem of Object Permanence, investigated in Hopper: Multi-hop Transformer for Spatiotemporal Reasoning accepted to ICLR 2021. Please refer to our full paper for detailed analysis and evaluations.

1. Overview

This repository provides the CATER-h dataset used in the paper "Hopper: Multi-hop Transformer for Spatiotemporal Reasoning", as well as instructions/code to create the CATER-h dataset.

If you find the dataset or the code helpful, please cite:

Honglu Zhou, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf. Hopper: Multi-hop Transformer for Spatiotemporal Reasoning. In International Conference on Learning Representations (ICLR), 2021.

@inproceedings{zhou2021caterh,
    title = {{Hopper: Multi-hop Transformer for Spatiotemporal Reasoning}},
    author = {Zhou, Honglu and Kadav, Asim and Lai, Farley and Niculescu-Mizil, Alexandru and Min, Martin Renqiang and Kapadia, Mubbasir and Graf, Hans Peter},
    booktitle = {ICLR},
    year = 2021
}  

2. Dataset

A pre-generated sample of the dataset used in the paper is provided here. If you'd like to generate a version of the dataset, please follow instructions in the following.

3. Requirements

  1. All CLEVR requirements (eg, Blender: the code was used with v2.79b).
  2. This code was used on Linux machines.
  3. GPU: This code was tested with multiple types of GPUs and should be compatible with most GPUs. By default it will use all the GPUs on the machine.
  4. All DETR requirements. You can check the site-packages of our conda environment (Python3.7.6) used.

4. Generating CATER-h

4.1 Generating videos and labels

(We modify code provided by CATER.)

  1. cd generate/

  2. echo $PWD >> blender-2.79b-linux-glibc219-x86_64/2.79/python/lib/python3.5/site-packages/clevr.pth (You can download our blender-2.79b-linux-glibc219-x86_64.)

  3. Run time python launch.py to start generating. Please read through the script to change any settings, paths etc. The command line options should also be easy to follow from the script (e.g., --num_images specifies the number of videos to generate).

  4. time python gen_train_test.py to generate labels for the dataset for each of the tasks. Change the parameters on the top of the file, and run it.

4.2 Obtaining frame and object features

You can find our extracted frame and object features here. The CNN backbone we utilized to obtain the frame features is a pre-trained ResNeXt-101 model. We use DETR trained on the LA-CATER dataset to obtain object features.

4.3 Filtering data by the frame index of the last visible snitch

  1. cd extract/

  2. Download our pretrained object detector from here. Create a folder checkpoints. Put the pretrained object detector into the folder checkpoints.

  3. Change paths etc in extract/configs/CATER-h.yml

  4. time ./run.sh

This will generate an output folder with pickle files that save the frame index of the last visible snitch and the detector's confidence.

  1. Run resample.ipynb which will resample the data to have balanced train/val set in terms of the class label and the frame index of the last visible snitch.

Acknowledgments

The code in this repository is heavily based on the following publically available implementations:

Owner
NECLA ML Group
NEC Labs America, Machine Learning Group
NECLA ML Group
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022